3.14.32 16+8x+2x42x5+(16+16x316x4)log(x)+(32x232x3)log2(x)x4+8x3log(x)+16x2log2(x)dx

Optimal. Leaf size=27 4+2xx2log(4)4x(x+4log(x))

________________________________________________________________________________________

Rubi [F]  time = 0.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 16+8x+2x42x5+(16+16x316x4)log(x)+(32x232x3)log2(x)x4+8x3log(x)+16x2log2(x)dx

Verification is not applicable to the result.

[In]

Int[(16 + 8*x + 2*x^4 - 2*x^5 + (16 + 16*x^3 - 16*x^4)*Log[x] + (32*x^2 - 32*x^3)*Log[x]^2)/(x^4 + 8*x^3*Log[x
] + 16*x^2*Log[x]^2),x]

[Out]

-(1 - x)^2 + 16*Defer[Int][1/(x^2*(x + 4*Log[x])^2), x] + 4*Defer[Int][1/(x*(x + 4*Log[x])^2), x] + 4*Defer[In
t][1/(x^2*(x + 4*Log[x])), x]

Rubi steps

integral=16+8x+2x42x5+(16+16x316x4)log(x)+(32x232x3)log2(x)x2(x+4log(x))2dx=(2(1+x)+4(4+x)x2(x+4log(x))2+4x2(x+4log(x)))dx=(1x)2+44+xx2(x+4log(x))2dx+41x2(x+4log(x))dx=(1x)2+41x2(x+4log(x))dx+4(4x2(x+4log(x))2+1x(x+4log(x))2)dx=(1x)2+41x(x+4log(x))2dx+41x2(x+4log(x))dx+161x2(x+4log(x))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 26, normalized size = 0.96 2(x+x22+2x(x+4log(x)))

Antiderivative was successfully verified.

[In]

Integrate[(16 + 8*x + 2*x^4 - 2*x^5 + (16 + 16*x^3 - 16*x^4)*Log[x] + (32*x^2 - 32*x^3)*Log[x]^2)/(x^4 + 8*x^3
*Log[x] + 16*x^2*Log[x]^2),x]

[Out]

-2*(-x + x^2/2 + 2/(x*(x + 4*Log[x])))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 36, normalized size = 1.33 x42x3+4(x32x2)log(x)+4x2+4xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x^3+32*x^2)*log(x)^2+(-16*x^4+16*x^3+16)*log(x)-2*x^5+2*x^4+8*x+16)/(16*x^2*log(x)^2+8*x^3*log
(x)+x^4),x, algorithm="fricas")

[Out]

-(x^4 - 2*x^3 + 4*(x^3 - 2*x^2)*log(x) + 4)/(x^2 + 4*x*log(x))

________________________________________________________________________________________

giac [A]  time = 0.33, size = 22, normalized size = 0.81 x2+2x4x2+4xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x^3+32*x^2)*log(x)^2+(-16*x^4+16*x^3+16)*log(x)-2*x^5+2*x^4+8*x+16)/(16*x^2*log(x)^2+8*x^3*log
(x)+x^4),x, algorithm="giac")

[Out]

-x^2 + 2*x - 4/(x^2 + 4*x*log(x))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 23, normalized size = 0.85




method result size



risch x2+2x4x(4ln(x)+x) 23
norman 4+8x2ln(x)+2x3x44x3ln(x)x(4ln(x)+x) 39



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-32*x^3+32*x^2)*ln(x)^2+(-16*x^4+16*x^3+16)*ln(x)-2*x^5+2*x^4+8*x+16)/(16*x^2*ln(x)^2+8*x^3*ln(x)+x^4),x
,method=_RETURNVERBOSE)

[Out]

-x^2+2*x-4/x/(4*ln(x)+x)

________________________________________________________________________________________

maxima [A]  time = 0.70, size = 36, normalized size = 1.33 x42x3+4(x32x2)log(x)+4x2+4xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x^3+32*x^2)*log(x)^2+(-16*x^4+16*x^3+16)*log(x)-2*x^5+2*x^4+8*x+16)/(16*x^2*log(x)^2+8*x^3*log
(x)+x^4),x, algorithm="maxima")

[Out]

-(x^4 - 2*x^3 + 4*(x^3 - 2*x^2)*log(x) + 4)/(x^2 + 4*x*log(x))

________________________________________________________________________________________

mupad [B]  time = 1.04, size = 22, normalized size = 0.81 2x4x(x+4ln(x))x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x + log(x)*(16*x^3 - 16*x^4 + 16) + log(x)^2*(32*x^2 - 32*x^3) + 2*x^4 - 2*x^5 + 16)/(8*x^3*log(x) + 16
*x^2*log(x)^2 + x^4),x)

[Out]

2*x - 4/(x*(x + 4*log(x))) - x^2

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 17, normalized size = 0.63 x2+2x4x2+4xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x**3+32*x**2)*ln(x)**2+(-16*x**4+16*x**3+16)*ln(x)-2*x**5+2*x**4+8*x+16)/(16*x**2*ln(x)**2+8*x
**3*ln(x)+x**4),x)

[Out]

-x**2 + 2*x - 4/(x**2 + 4*x*log(x))

________________________________________________________________________________________