3.14.34 13225x2+e10+4xx2+x4+e5+2xx(24+2x2x2)14424x2+e10+4xx2+x4+e5+2xx(242x2)dx

Optimal. Leaf size=24 2+xx12+e5+2xxx2

________________________________________________________________________________________

Rubi [F]  time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 13225x2+e10+4xx2+x4+e5+2xx(24+2x2x2)14424x2+e10+4xx2+x4+e5+2xx(242x2)dx

Verification is not applicable to the result.

[In]

Int[(132 - 25*x^2 + E^(-10 + 4*x)*x^2 + x^4 + E^(-5 + 2*x)*x*(24 + 2*x - 2*x^2))/(144 - 24*x^2 + E^(-10 + 4*x)
*x^2 + x^4 + E^(-5 + 2*x)*x*(24 - 2*x^2)),x]

[Out]

x - 12*E^10*Defer[Int][(-12*E^5 - E^(2*x)*x + E^5*x^2)^(-2), x] - 24*E^10*Defer[Int][x/(-12*E^5 - E^(2*x)*x +
E^5*x^2)^2, x] - E^10*Defer[Int][x^2/(-12*E^5 - E^(2*x)*x + E^5*x^2)^2, x] + 2*E^10*Defer[Int][x^3/(-12*E^5 -
E^(2*x)*x + E^5*x^2)^2, x] - 2*E^5*Defer[Int][x/(-12*E^5 - E^(2*x)*x + E^5*x^2), x]

Rubi steps

integral=e10(13225x2+e10+4xx2+x4+e5+2xx(24+2x2x2))(12e5+e2xxe5x2)2dx=e1013225x2+e10+4xx2+x4+e5+2xx(24+2x2x2)(12e5+e2xxe5x2)2dx=e10(1e102xe5(12e5e2xx+e5x2)+1224xx2+2x3(12e5e2xx+e5x2)2)dx=x(2e5)x12e5e2xx+e5x2dx+e101224xx2+2x3(12e5e2xx+e5x2)2dx=x(2e5)x12e5e2xx+e5x2dx+e10(12(12e5e2xx+e5x2)224x(12e5e2xx+e5x2)2x2(12e5e2xx+e5x2)2+2x3(12e5e2xx+e5x2)2)dx=x(2e5)x12e5e2xx+e5x2dxe10x2(12e5e2xx+e5x2)2dx+(2e10)x3(12e5e2xx+e5x2)2dx(12e10)1(12e5e2xx+e5x2)2dx(24e10)x(12e5e2xx+e5x2)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 27, normalized size = 1.12 x+e5xe2xx+e5(12+x2)

Antiderivative was successfully verified.

[In]

Integrate[(132 - 25*x^2 + E^(-10 + 4*x)*x^2 + x^4 + E^(-5 + 2*x)*x*(24 + 2*x - 2*x^2))/(144 - 24*x^2 + E^(-10
+ 4*x)*x^2 + x^4 + E^(-5 + 2*x)*x*(24 - 2*x^2)),x]

[Out]

x + (E^5*x)/(-(E^(2*x)*x) + E^5*(-12 + x^2))

________________________________________________________________________________________

fricas [A]  time = 0.98, size = 36, normalized size = 1.50 x3xe(2x+log(x)5)11xx2e(2x+log(x)5)12

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x+log(x)-5)^2+(-2*x^2+2*x+24)*exp(2*x+log(x)-5)+x^4-25*x^2+132)/(exp(2*x+log(x)-5)^2+(-2*x^2+
24)*exp(2*x+log(x)-5)+x^4-24*x^2+144),x, algorithm="fricas")

[Out]

(x^3 - x*e^(2*x + log(x) - 5) - 11*x)/(x^2 - e^(2*x + log(x) - 5) - 12)

________________________________________________________________________________________

giac [A]  time = 0.41, size = 42, normalized size = 1.75 x3e5x2e(2x)11xe5x2e5xe(2x)12e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x+log(x)-5)^2+(-2*x^2+2*x+24)*exp(2*x+log(x)-5)+x^4-25*x^2+132)/(exp(2*x+log(x)-5)^2+(-2*x^2+
24)*exp(2*x+log(x)-5)+x^4-24*x^2+144),x, algorithm="giac")

[Out]

(x^3*e^5 - x^2*e^(2*x) - 11*x*e^5)/(x^2*e^5 - x*e^(2*x) - 12*e^5)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 21, normalized size = 0.88




method result size



risch x+xx2xe2x512 21
norman x311xxe2x+ln(x)5x2e2x+ln(x)512 37



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*x+ln(x)-5)^2+(-2*x^2+2*x+24)*exp(2*x+ln(x)-5)+x^4-25*x^2+132)/(exp(2*x+ln(x)-5)^2+(-2*x^2+24)*exp(2
*x+ln(x)-5)+x^4-24*x^2+144),x,method=_RETURNVERBOSE)

[Out]

x+x/(x^2-x*exp(2*x-5)-12)

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 42, normalized size = 1.75 x3e5x2e(2x)11xe5x2e5xe(2x)12e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x+log(x)-5)^2+(-2*x^2+2*x+24)*exp(2*x+log(x)-5)+x^4-25*x^2+132)/(exp(2*x+log(x)-5)^2+(-2*x^2+
24)*exp(2*x+log(x)-5)+x^4-24*x^2+144),x, algorithm="maxima")

[Out]

(x^3*e^5 - x^2*e^(2*x) - 11*x*e^5)/(x^2*e^5 - x*e^(2*x) - 12*e^5)

________________________________________________________________________________________

mupad [B]  time = 1.04, size = 22, normalized size = 0.92 xxxe2x5x2+12

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(4*x + 2*log(x) - 10) + exp(2*x + log(x) - 5)*(2*x - 2*x^2 + 24) - 25*x^2 + x^4 + 132)/(exp(4*x + 2*lo
g(x) - 10) - exp(2*x + log(x) - 5)*(2*x^2 - 24) - 24*x^2 + x^4 + 144),x)

[Out]

x - x/(x*exp(2*x - 5) - x^2 + 12)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 15, normalized size = 0.62 xxx2+xe2x5+12

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((exp(2*x+ln(x)-5)**2+(-2*x**2+2*x+24)*exp(2*x+ln(x)-5)+x**4-25*x**2+132)/(exp(2*x+ln(x)-5)**2+(-2*x*
*2+24)*exp(2*x+ln(x)-5)+x**4-24*x**2+144),x)

[Out]

x - x/(-x**2 + x*exp(2*x - 5) + 12)

________________________________________________________________________________________