Optimal. Leaf size=24 \[ \left (1+x-x^2 \left (e^{-2+x}+x+e^{-x} x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 2.64, antiderivative size = 108, normalized size of antiderivative = 4.50, number of steps used = 74, number of rules used = 5, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6742, 2176, 2194, 6688, 2196} \begin {gather*} e^{-2 x} x^6+2 e^{-x} x^6+x^6+2 e^{x-2} x^5+\frac {2 x^5}{e^2}-2 e^{-x} x^4+e^{2 x-4} x^4-2 x^4-2 e^{x-2} x^3-2 e^{-x} x^3-2 x^3-2 e^{x-2} x^2+x^2+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6 e^{-2 x} x^5-2 e^{-2 x} x^6+2 e^{-2-x} x^2 \left (-3 e^2-3 e^2 x+e^2 x^2+5 e^x x^2+6 e^2 x^3-e^2 x^4\right )+\frac {2 \left (e^4+e^4 x-2 e^{2+x} x-3 e^4 x^2-4 e^{2+x} x^2-4 e^4 x^3+2 e^{2 x} x^3-e^{2+x} x^3+e^{2 x} x^4+5 e^{2+x} x^4+3 e^4 x^5+e^{2+x} x^5\right )}{e^4}\right ) \, dx\\ &=-\left (2 \int e^{-2 x} x^6 \, dx\right )+2 \int e^{-2-x} x^2 \left (-3 e^2-3 e^2 x+e^2 x^2+5 e^x x^2+6 e^2 x^3-e^2 x^4\right ) \, dx+6 \int e^{-2 x} x^5 \, dx+\frac {2 \int \left (e^4+e^4 x-2 e^{2+x} x-3 e^4 x^2-4 e^{2+x} x^2-4 e^4 x^3+2 e^{2 x} x^3-e^{2+x} x^3+e^{2 x} x^4+5 e^{2+x} x^4+3 e^4 x^5+e^{2+x} x^5\right ) \, dx}{e^4}\\ &=2 x+x^2-2 x^3-2 x^4-3 e^{-2 x} x^5+x^6+e^{-2 x} x^6+2 \int \left (\frac {5 x^4}{e^2}+e^{-x} x^2 \left (-3-3 x+x^2+6 x^3-x^4\right )\right ) \, dx-6 \int e^{-2 x} x^5 \, dx+15 \int e^{-2 x} x^4 \, dx-\frac {2 \int e^{2+x} x^3 \, dx}{e^4}+\frac {2 \int e^{2 x} x^4 \, dx}{e^4}+\frac {2 \int e^{2+x} x^5 \, dx}{e^4}-\frac {4 \int e^{2+x} x \, dx}{e^4}+\frac {4 \int e^{2 x} x^3 \, dx}{e^4}-\frac {8 \int e^{2+x} x^2 \, dx}{e^4}+\frac {10 \int e^{2+x} x^4 \, dx}{e^4}\\ &=2 x-4 e^{-2+x} x+x^2-8 e^{-2+x} x^2-2 x^3-2 e^{-2+x} x^3+2 e^{-4+2 x} x^3-2 x^4+10 e^{-2+x} x^4-\frac {15}{2} e^{-2 x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 \int e^{-x} x^2 \left (-3-3 x+x^2+6 x^3-x^4\right ) \, dx-15 \int e^{-2 x} x^4 \, dx+30 \int e^{-2 x} x^3 \, dx+\frac {4 \int e^{2+x} \, dx}{e^4}-\frac {4 \int e^{2 x} x^3 \, dx}{e^4}-\frac {6 \int e^{2 x} x^2 \, dx}{e^4}+\frac {6 \int e^{2+x} x^2 \, dx}{e^4}-\frac {10 \int e^{2+x} x^4 \, dx}{e^4}+\frac {16 \int e^{2+x} x \, dx}{e^4}-\frac {40 \int e^{2+x} x^3 \, dx}{e^4}\\ &=4 e^{-2+x}+2 x+12 e^{-2+x} x+x^2-2 e^{-2+x} x^2-3 e^{-4+2 x} x^2-2 x^3-42 e^{-2+x} x^3-15 e^{-2 x} x^3-2 x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 \int \left (-3 e^{-x} x^2-3 e^{-x} x^3+e^{-x} x^4+6 e^{-x} x^5-e^{-x} x^6\right ) \, dx-30 \int e^{-2 x} x^3 \, dx+45 \int e^{-2 x} x^2 \, dx+\frac {6 \int e^{2 x} x \, dx}{e^4}+\frac {6 \int e^{2 x} x^2 \, dx}{e^4}-\frac {12 \int e^{2+x} x \, dx}{e^4}-\frac {16 \int e^{2+x} \, dx}{e^4}+\frac {40 \int e^{2+x} x^3 \, dx}{e^4}+\frac {120 \int e^{2+x} x^2 \, dx}{e^4}\\ &=-12 e^{-2+x}+2 x+3 e^{-4+2 x} x+x^2+118 e^{-2+x} x^2-\frac {45}{2} e^{-2 x} x^2-2 x^3-2 e^{-2+x} x^3-2 x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 \int e^{-x} x^4 \, dx-2 \int e^{-x} x^6 \, dx-6 \int e^{-x} x^2 \, dx-6 \int e^{-x} x^3 \, dx+12 \int e^{-x} x^5 \, dx+45 \int e^{-2 x} x \, dx-45 \int e^{-2 x} x^2 \, dx-\frac {3 \int e^{2 x} \, dx}{e^4}-\frac {6 \int e^{2 x} x \, dx}{e^4}+\frac {12 \int e^{2+x} \, dx}{e^4}-\frac {120 \int e^{2+x} x^2 \, dx}{e^4}-\frac {240 \int e^{2+x} x \, dx}{e^4}\\ &=-\frac {3}{2} e^{-4+2 x}+2 x-240 e^{-2+x} x-\frac {45}{2} e^{-2 x} x+x^2-2 e^{-2+x} x^2+6 e^{-x} x^2-2 x^3-2 e^{-2+x} x^3+6 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5-12 e^{-x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6+8 \int e^{-x} x^3 \, dx-12 \int e^{-x} x \, dx-12 \int e^{-x} x^5 \, dx-18 \int e^{-x} x^2 \, dx+\frac {45}{2} \int e^{-2 x} \, dx-45 \int e^{-2 x} x \, dx+60 \int e^{-x} x^4 \, dx+\frac {3 \int e^{2 x} \, dx}{e^4}+\frac {240 \int e^{2+x} \, dx}{e^4}+\frac {240 \int e^{2+x} x \, dx}{e^4}\\ &=240 e^{-2+x}-\frac {45 e^{-2 x}}{4}+2 x+12 e^{-x} x+x^2-2 e^{-2+x} x^2+24 e^{-x} x^2-2 x^3-2 e^{-2+x} x^3-2 e^{-x} x^3-2 x^4-62 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6-12 \int e^{-x} \, dx-\frac {45}{2} \int e^{-2 x} \, dx+24 \int e^{-x} x^2 \, dx-36 \int e^{-x} x \, dx-60 \int e^{-x} x^4 \, dx+240 \int e^{-x} x^3 \, dx-\frac {240 \int e^{2+x} \, dx}{e^4}\\ &=12 e^{-x}+2 x+48 e^{-x} x+x^2-2 e^{-2+x} x^2-2 x^3-2 e^{-2+x} x^3-242 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6-36 \int e^{-x} \, dx+48 \int e^{-x} x \, dx-240 \int e^{-x} x^3 \, dx+720 \int e^{-x} x^2 \, dx\\ &=48 e^{-x}+2 x+x^2-2 e^{-2+x} x^2-720 e^{-x} x^2-2 x^3-2 e^{-2+x} x^3-2 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6+48 \int e^{-x} \, dx-720 \int e^{-x} x^2 \, dx+1440 \int e^{-x} x \, dx\\ &=2 x-1440 e^{-x} x+x^2-2 e^{-2+x} x^2-2 x^3-2 e^{-2+x} x^3-2 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6+1440 \int e^{-x} \, dx-1440 \int e^{-x} x \, dx\\ &=-1440 e^{-x}+2 x+x^2-2 e^{-2+x} x^2-2 x^3-2 e^{-2+x} x^3-2 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6-1440 \int e^{-x} \, dx\\ &=2 x+x^2-2 e^{-2+x} x^2-2 x^3-2 e^{-2+x} x^3-2 e^{-x} x^3-2 x^4-2 e^{-x} x^4+e^{-4+2 x} x^4+\frac {2 x^5}{e^2}+2 e^{-2+x} x^5+x^6+e^{-2 x} x^6+2 e^{-x} x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.25, size = 108, normalized size = 4.50 \begin {gather*} 2 \left (x+\frac {x^2}{2}-x^3-x^4+\frac {1}{2} e^{-4+2 x} x^4+\frac {x^5}{e^2}+\frac {x^6}{2}+\frac {1}{2} e^{-2 x} x^6+e^x \left (-\frac {x^2}{e^2}-\frac {x^3}{e^2}+\frac {x^5}{e^2}\right )-e^{-x} \left (x^3+x^4-x^6\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.48, size = 100, normalized size = 4.17 \begin {gather*} {\left (x^{6} e^{4} + x^{4} e^{\left (4 \, x\right )} + {\left (2 \, x^{5} e^{2} + {\left (x^{6} - 2 \, x^{4} - 2 \, x^{3} + x^{2} + 2 \, x\right )} e^{4}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{5} - x^{3} - x^{2}\right )} e^{\left (3 \, x + 2\right )} + 2 \, {\left (x^{6} - x^{4} - x^{3}\right )} e^{\left (x + 4\right )}\right )} e^{\left (-2 \, x - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 122, normalized size = 5.08 \begin {gather*} {\left (x^{6} e^{6} + 2 \, x^{6} e^{\left (-x + 6\right )} + x^{6} e^{\left (-2 \, x + 6\right )} + 2 \, x^{5} e^{4} + 2 \, x^{5} e^{\left (x + 4\right )} - 2 \, x^{4} e^{6} + x^{4} e^{\left (2 \, x + 2\right )} - 2 \, x^{4} e^{\left (-x + 6\right )} - 2 \, x^{3} e^{6} - 2 \, x^{3} e^{\left (x + 4\right )} - 2 \, x^{3} e^{\left (-x + 6\right )} + x^{2} e^{6} - 2 \, x^{2} e^{\left (x + 4\right )} + 2 \, x e^{6}\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 92, normalized size = 3.83
method | result | size |
risch | \(x^{4} {\mathrm e}^{2 x -4}+2 \,{\mathrm e}^{-2} x^{5}+x^{6}-2 x^{4}-2 x^{3}+x^{2}+2 x +\left (2 \,{\mathrm e}^{-2} x^{5}-2 \,{\mathrm e}^{-2} x^{3}-2 x^{2} {\mathrm e}^{-2}\right ) {\mathrm e}^{x}+\left (2 x^{6}-2 x^{4}-2 x^{3}\right ) {\mathrm e}^{-x}+{\mathrm e}^{-2 x} x^{6}\) | \(92\) |
default | \(x^{6}-2 x^{4}-2 x^{3}+x^{2}+2 x -2 x^{3} {\mathrm e}^{-x}-2 x^{4} {\mathrm e}^{-x}+2 \,{\mathrm e}^{-2} x^{5}+{\mathrm e}^{-2 x} x^{6}+2 \,{\mathrm e}^{-x} x^{6}-4 \,{\mathrm e}^{-2} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-8 \,{\mathrm e}^{-2} \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )-2 \,{\mathrm e}^{-2} \left ({\mathrm e}^{x} x^{3}-3 \,{\mathrm e}^{x} x^{2}+6 \,{\mathrm e}^{x} x -6 \,{\mathrm e}^{x}\right )+10 \,{\mathrm e}^{-2} \left ({\mathrm e}^{x} x^{4}-4 \,{\mathrm e}^{x} x^{3}+12 \,{\mathrm e}^{x} x^{2}-24 \,{\mathrm e}^{x} x +24 \,{\mathrm e}^{x}\right )+2 \,{\mathrm e}^{-2} \left (x^{5} {\mathrm e}^{x}-5 \,{\mathrm e}^{x} x^{4}+20 \,{\mathrm e}^{x} x^{3}-60 \,{\mathrm e}^{x} x^{2}+120 \,{\mathrm e}^{x} x -120 \,{\mathrm e}^{x}\right )+4 \,{\mathrm e}^{-4} \left (\frac {{\mathrm e}^{2 x} x^{3}}{2}-\frac {3 \,{\mathrm e}^{2 x} x^{2}}{4}+\frac {3 x \,{\mathrm e}^{2 x}}{4}-\frac {3 \,{\mathrm e}^{2 x}}{8}\right )+2 \,{\mathrm e}^{-4} \left (\frac {{\mathrm e}^{2 x} x^{4}}{2}-{\mathrm e}^{2 x} x^{3}+\frac {3 \,{\mathrm e}^{2 x} x^{2}}{2}-\frac {3 x \,{\mathrm e}^{2 x}}{2}+\frac {3 \,{\mathrm e}^{2 x}}{4}\right )\) | \(283\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 360, normalized size = 15.00 \begin {gather*} x^{6} + 2 \, x^{5} e^{\left (-2\right )} - 2 \, x^{4} - 2 \, x^{3} + x^{2} + 2 \, {\left (x^{6} + 6 \, x^{5} + 30 \, x^{4} + 120 \, x^{3} + 360 \, x^{2} + 720 \, x + 720\right )} e^{\left (-x\right )} - 12 \, {\left (x^{5} + 5 \, x^{4} + 20 \, x^{3} + 60 \, x^{2} + 120 \, x + 120\right )} e^{\left (-x\right )} - 2 \, {\left (x^{4} + 4 \, x^{3} + 12 \, x^{2} + 24 \, x + 24\right )} e^{\left (-x\right )} + 6 \, {\left (x^{3} + 3 \, x^{2} + 6 \, x + 6\right )} e^{\left (-x\right )} + 6 \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} + \frac {1}{4} \, {\left (4 \, x^{6} + 12 \, x^{5} + 30 \, x^{4} + 60 \, x^{3} + 90 \, x^{2} + 90 \, x + 45\right )} e^{\left (-2 \, x\right )} - \frac {3}{4} \, {\left (4 \, x^{5} + 10 \, x^{4} + 20 \, x^{3} + 30 \, x^{2} + 30 \, x + 15\right )} e^{\left (-2 \, x\right )} + \frac {1}{2} \, {\left (2 \, x^{4} - 4 \, x^{3} + 6 \, x^{2} - 6 \, x + 3\right )} e^{\left (2 \, x - 4\right )} + \frac {1}{2} \, {\left (4 \, x^{3} - 6 \, x^{2} + 6 \, x - 3\right )} e^{\left (2 \, x - 4\right )} + 2 \, {\left (x^{5} - 5 \, x^{4} + 20 \, x^{3} - 60 \, x^{2} + 120 \, x - 120\right )} e^{\left (x - 2\right )} + 10 \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{\left (x - 2\right )} - 2 \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{\left (x - 2\right )} - 8 \, {\left (x^{2} - 2 \, x + 2\right )} e^{\left (x - 2\right )} - 4 \, {\left (x - 1\right )} e^{\left (x - 2\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 93, normalized size = 3.88 \begin {gather*} 2\,x-{\mathrm {e}}^x\,\left (-2\,{\mathrm {e}}^{-2}\,x^5+2\,{\mathrm {e}}^{-2}\,x^3+2\,{\mathrm {e}}^{-2}\,x^2\right )+x^6\,{\mathrm {e}}^{-2\,x}+2\,x^5\,{\mathrm {e}}^{-2}-{\mathrm {e}}^{-x}\,\left (-2\,x^6+2\,x^4+2\,x^3\right )+x^4\,{\mathrm {e}}^{2\,x-4}+x^2-2\,x^3-2\,x^4+x^6 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 112, normalized size = 4.67 \begin {gather*} x^{6} + \frac {2 x^{5}}{e^{2}} - 2 x^{4} - 2 x^{3} + x^{2} + 2 x + \frac {x^{6} e^{6} e^{- 2 x} + x^{4} e^{2} e^{2 x} + \left (2 x^{5} e^{4} - 2 x^{3} e^{4} - 2 x^{2} e^{4}\right ) e^{x} + \left (2 x^{6} e^{6} - 2 x^{4} e^{6} - 2 x^{3} e^{6}\right ) e^{- x}}{e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________