Optimal. Leaf size=21 \[ 2 x \left (\frac {e^{4 x}}{144}+(-x+\log (x))^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 69, normalized size of antiderivative = 3.29, number of steps used = 8, number of rules used = 7, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {12, 2176, 2194, 2313, 9, 2296, 2295} \begin {gather*} 2 x^3-2 x^2+4 \left (x-x^2\right ) \log (x)+4 x-\frac {e^{4 x}}{288}+2 (1-x)^2+\frac {1}{288} e^{4 x} (4 x+1)+2 x \log ^2(x)-4 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rule 12
Rule 2176
Rule 2194
Rule 2295
Rule 2296
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{72} \int \left (-288 x+432 x^2+e^{4 x} (1+4 x)+(288-576 x) \log (x)+144 \log ^2(x)\right ) \, dx\\ &=-2 x^2+2 x^3+\frac {1}{72} \int e^{4 x} (1+4 x) \, dx+\frac {1}{72} \int (288-576 x) \log (x) \, dx+2 \int \log ^2(x) \, dx\\ &=-2 x^2+2 x^3+\frac {1}{288} e^{4 x} (1+4 x)+4 \left (x-x^2\right ) \log (x)+2 x \log ^2(x)-\frac {1}{72} \int e^{4 x} \, dx-\frac {1}{72} \int 288 (1-x) \, dx-4 \int \log (x) \, dx\\ &=-\frac {e^{4 x}}{288}+2 (1-x)^2+4 x-2 x^2+2 x^3+\frac {1}{288} e^{4 x} (1+4 x)-4 x \log (x)+4 \left (x-x^2\right ) \log (x)+2 x \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 1.43 \begin {gather*} \frac {1}{72} e^{4 x} x+2 x^3-4 x^2 \log (x)+2 x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.39, size = 27, normalized size = 1.29 \begin {gather*} 2 \, x^{3} - 4 \, x^{2} \log \relax (x) + 2 \, x \log \relax (x)^{2} + \frac {1}{72} \, x e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 27, normalized size = 1.29 \begin {gather*} 2 \, x^{3} - 4 \, x^{2} \log \relax (x) + 2 \, x \log \relax (x)^{2} + \frac {1}{72} \, x e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 28, normalized size = 1.33
method | result | size |
risch | \(2 x^{3}+2 x \ln \relax (x )^{2}-4 x^{2} \ln \relax (x )+\frac {x \,{\mathrm e}^{4 x}}{72}\) | \(28\) |
default | \(2 x^{3}+2 x \ln \relax (x )^{2}-4 x^{2} \ln \relax (x )+\frac {x \,{\mathrm e}^{4 x}}{72}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 40, normalized size = 1.90 \begin {gather*} 2 \, x^{3} + 2 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + \frac {1}{72} \, x e^{\left (4 \, x\right )} - 4 \, {\left (x^{2} - x\right )} \log \relax (x) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 24, normalized size = 1.14 \begin {gather*} \frac {x\,\left ({\mathrm {e}}^{4\,x}+144\,{\ln \relax (x)}^2-288\,x\,\ln \relax (x)+144\,x^2\right )}{72} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 29, normalized size = 1.38 \begin {gather*} 2 x^{3} - 4 x^{2} \log {\relax (x )} + \frac {x e^{4 x}}{72} + 2 x \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________