Optimal. Leaf size=24 \[ 3 \log \left (\frac {2}{3} \left (-4+e^{-5+x}-\frac {5 x}{4}-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 1, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6684} \begin {gather*} 3 \log \left (4 e^5 x^2+5 e^5 x-4 e^x+16 e^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=3 \log \left (16 e^5-4 e^x+5 e^5 x+4 e^5 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 0.83 \begin {gather*} 3 \log \left (-16+4 e^{-5+x}-5 x-4 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 19, normalized size = 0.79 \begin {gather*} 3 \, \log \left (-4 \, x^{2} - 5 \, x + 4 \, e^{\left (x - 5\right )} - 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 24, normalized size = 1.00 \begin {gather*} 3 \, \log \left (-4 \, x^{2} e^{5} - 5 \, x e^{5} - 16 \, e^{5} + 4 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.83
method | result | size |
derivativedivides | \(3 \ln \left (4 \,{\mathrm e}^{x -5}-4 x^{2}-5 x -16\right )\) | \(20\) |
default | \(3 \ln \left (4 \,{\mathrm e}^{x -5}-4 x^{2}-5 x -16\right )\) | \(20\) |
norman | \(3 \ln \left (4 x^{2}+5 x -4 \,{\mathrm e}^{x -5}+16\right )\) | \(20\) |
risch | \(15+3 \ln \left (-x^{2}-\frac {5 x}{4}+{\mathrm e}^{x -5}-4\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 0.79 \begin {gather*} 3 \, \log \left (4 \, x^{2} + 5 \, x - 4 \, e^{\left (x - 5\right )} + 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 17, normalized size = 0.71 \begin {gather*} 3\,\ln \left (\frac {5\,x}{4}-{\mathrm {e}}^{x-5}+x^2+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.71 \begin {gather*} 3 \log {\left (- x^{2} - \frac {5 x}{4} + e^{x - 5} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________