Optimal. Leaf size=38 \[ \frac {3}{\frac {4}{6-e^{\frac {e^{e^x}}{5}}+e^{2 e^x-2 x}}-x} \]
________________________________________________________________________________________
Rubi [F] time = 83.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15 e^{4 e^x}+540 e^{4 x}+15 e^{\frac {2 e^{e^x}}{5}+4 x}+e^{2 e^x} \left (60 e^{2 x}+120 e^{3 x}\right )+e^{\frac {e^{e^x}}{5}} \left (-180 e^{4 x}-30 e^{2 e^x+2 x}-12 e^{e^x+5 x}\right )}{5 e^{4 e^x} x^2+5 e^{\frac {2 e^{e^x}}{5}+4 x} x^2+e^{2 e^x+2 x} \left (-40 x+60 x^2\right )+e^{4 x} \left (80-240 x+180 x^2\right )+e^{\frac {e^{e^x}}{5}} \left (-10 e^{2 e^x+2 x} x^2+e^{4 x} \left (40 x-60 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (5 e^{4 e^x}+180 e^{4 x}+20 e^{2 \left (e^x+x\right )}-10 e^{\frac {e^{e^x}}{5}+2 e^x+2 x}+40 e^{2 e^x+3 x}-60 e^{\frac {e^{e^x}}{5}+4 x}+5 e^{\frac {2 e^{e^x}}{5}+4 x}-4 e^{\frac {e^{e^x}}{5}+e^x+5 x}\right )}{5 \left (e^{2 x} (4-6 x)-e^{2 e^x} x+e^{\frac {e^{e^x}}{5}+2 x} x\right )^2} \, dx\\ &=\frac {3}{5} \int \frac {5 e^{4 e^x}+180 e^{4 x}+20 e^{2 \left (e^x+x\right )}-10 e^{\frac {e^{e^x}}{5}+2 e^x+2 x}+40 e^{2 e^x+3 x}-60 e^{\frac {e^{e^x}}{5}+4 x}+5 e^{\frac {2 e^{e^x}}{5}+4 x}-4 e^{\frac {e^{e^x}}{5}+e^x+5 x}}{\left (e^{2 x} (4-6 x)-e^{2 e^x} x+e^{\frac {e^{e^x}}{5}+2 x} x\right )^2} \, dx\\ &=\frac {3}{5} \int \left (-\frac {4 e^{\frac {e^{e^x}}{5}+e^x+x}}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2}+\frac {5 \left (-6+e^{\frac {e^{e^x}}{5}}\right )^2}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2}+\frac {8 e^{2 e^x} \left (-10+5 e^{\frac {e^{e^x}}{5}}-20 e^x-30 x+5 e^{\frac {e^{e^x}}{5}} x+30 e^x x-5 e^{\frac {e^{e^x}}{5}+x} x+e^{\frac {e^{e^x}}{5}+e^x+x} x\right )}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2 \left (-4 e^{2 x}+e^{2 e^x} x+6 e^{2 x} x-e^{\frac {e^{e^x}}{5}+2 x} x\right )}-\frac {4 e^{4 e^x} \left (-20+40 x-40 e^x x-60 x^2+10 e^{\frac {e^{e^x}}{5}} x^2+60 e^x x^2-10 e^{\frac {e^{e^x}}{5}+x} x^2+e^{\frac {e^{e^x}}{5}+e^x+x} x^2\right )}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2 \left (-4 e^{2 x}+e^{2 e^x} x+6 e^{2 x} x-e^{\frac {e^{e^x}}{5}+2 x} x\right )^2}\right ) \, dx\\ &=-\left (\frac {12}{5} \int \frac {e^{\frac {e^{e^x}}{5}+e^x+x}}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2} \, dx\right )-\frac {12}{5} \int \frac {e^{4 e^x} \left (-20+40 x-40 e^x x-60 x^2+10 e^{\frac {e^{e^x}}{5}} x^2+60 e^x x^2-10 e^{\frac {e^{e^x}}{5}+x} x^2+e^{\frac {e^{e^x}}{5}+e^x+x} x^2\right )}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2 \left (-4 e^{2 x}+e^{2 e^x} x+6 e^{2 x} x-e^{\frac {e^{e^x}}{5}+2 x} x\right )^2} \, dx+3 \int \frac {\left (-6+e^{\frac {e^{e^x}}{5}}\right )^2}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2} \, dx+\frac {24}{5} \int \frac {e^{2 e^x} \left (-10+5 e^{\frac {e^{e^x}}{5}}-20 e^x-30 x+5 e^{\frac {e^{e^x}}{5}} x+30 e^x x-5 e^{\frac {e^{e^x}}{5}+x} x+e^{\frac {e^{e^x}}{5}+e^x+x} x\right )}{\left (4-6 x+e^{\frac {e^{e^x}}{5}} x\right )^2 \left (-4 e^{2 x}+e^{2 e^x} x+6 e^{2 x} x-e^{\frac {e^{e^x}}{5}+2 x} x\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 55, normalized size = 1.45 \begin {gather*} -\frac {3 \left (1-\frac {4 e^{2 x}}{e^{2 x} (4-6 x)-e^{2 e^x} x+e^{\frac {e^{e^x}}{5}+2 x} x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.96, size = 68, normalized size = 1.79 \begin {gather*} -\frac {3 \, {\left (6 \, e^{\left (12 \, x\right )} - e^{\left (12 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + e^{\left (10 \, x + 2 \, e^{x}\right )}\right )}}{2 \, {\left (3 \, x - 2\right )} e^{\left (12 \, x\right )} - x e^{\left (12 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + x e^{\left (10 \, x + 2 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.26, size = 62, normalized size = 1.63 \begin {gather*} -\frac {3 \, {\left (6 \, e^{\left (2 \, x\right )} - e^{\left (2 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + e^{\left (2 \, e^{x}\right )}\right )}}{6 \, x e^{\left (2 \, x\right )} - x e^{\left (2 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + x e^{\left (2 \, e^{x}\right )} - 4 \, e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 52, normalized size = 1.37
method | result | size |
risch | \(-\frac {3}{x}+\frac {12 \,{\mathrm e}^{2 x}}{x \left (x \,{\mathrm e}^{2 x +\frac {{\mathrm e}^{{\mathrm e}^{x}}}{5}}-6 x \,{\mathrm e}^{2 x}-x \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+4 \,{\mathrm e}^{2 x}\right )}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 60, normalized size = 1.58 \begin {gather*} -\frac {3 \, {\left (6 \, e^{\left (2 \, x\right )} - e^{\left (2 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + e^{\left (2 \, e^{x}\right )}\right )}}{2 \, {\left (3 \, x - 2\right )} e^{\left (2 \, x\right )} - x e^{\left (2 \, x + \frac {1}{5} \, e^{\left (e^{x}\right )}\right )} + x e^{\left (2 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 191, normalized size = 5.03 \begin {gather*} \frac {12\,\left (20\,{\mathrm {e}}^{6\,x}-10\,x^2\,{\mathrm {e}}^{4\,x+2\,{\mathrm {e}}^x}+10\,x^2\,{\mathrm {e}}^{5\,x+2\,{\mathrm {e}}^x}-x^2\,{\mathrm {e}}^{5\,x+3\,{\mathrm {e}}^x}+4\,x\,{\mathrm {e}}^{7\,x+{\mathrm {e}}^x}-6\,x^2\,{\mathrm {e}}^{7\,x+{\mathrm {e}}^x}\right )}{x\,\left (4\,{\mathrm {e}}^{2\,x}-6\,x\,{\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^{2\,x+\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{5}}-x\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}\right )\,\left (20\,{\mathrm {e}}^{4\,x}-10\,x^2\,{\mathrm {e}}^{2\,x+2\,{\mathrm {e}}^x}+10\,x^2\,{\mathrm {e}}^{3\,x+2\,{\mathrm {e}}^x}-x^2\,{\mathrm {e}}^{3\,x+3\,{\mathrm {e}}^x}+4\,x\,{\mathrm {e}}^{5\,x+{\mathrm {e}}^x}-6\,x^2\,{\mathrm {e}}^{5\,x+{\mathrm {e}}^x}\right )}-\frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.41, size = 54, normalized size = 1.42 \begin {gather*} \frac {12 e^{2 x}}{x^{2} e^{2 x} e^{\frac {e^{e^{x}}}{5}} - 6 x^{2} e^{2 x} - x^{2} e^{2 e^{x}} + 4 x e^{2 x}} - \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________