Optimal. Leaf size=18 \[ 4^{-x} \left (4+\log (7)+\frac {\log (x)}{x^2}\right )^x \]
________________________________________________________________________________________
Rubi [F] time = 3.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4^{-x} \left (\frac {4 x^2+x^2 \log (7)+\log (x)}{x^2}\right )^x \left (1-2 \log (x)+\left (4 x^2+x^2 \log (7)+\log (x)\right ) \log \left (\frac {4 x^2+x^2 \log (7)+\log (x)}{4 x^2}\right )\right )}{4 x^2+x^2 \log (7)+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4^{-x} \left (\frac {4 x^2+x^2 \log (7)+\log (x)}{x^2}\right )^x \left (1-2 \log (x)+\left (4 x^2+x^2 \log (7)+\log (x)\right ) \log \left (\frac {4 x^2+x^2 \log (7)+\log (x)}{4 x^2}\right )\right )}{x^2 (4+\log (7))+\log (x)} \, dx\\ &=\int \frac {4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \left (1-2 \log (x)+\left (4 x^2+x^2 \log (7)+\log (x)\right ) \log \left (\frac {4 x^2+x^2 \log (7)+\log (x)}{4 x^2}\right )\right )}{x^2 (4+\log (7))+\log (x)} \, dx\\ &=\int \left (\frac {4^{-x} (1-2 \log (x)) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)}+4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right )\right ) \, dx\\ &=\int \frac {4^{-x} (1-2 \log (x)) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=\int \frac {4^{-x} (1-2 \log (x)) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{x^2 (4+\log (7))+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=\int \left (-2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x+\frac {4^{-x} \left (1+2 x^2 (4+\log (7))\right ) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)}\right ) \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=-\int 2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \, dx+\int \frac {4^{-x} \left (1+2 x^2 (4+\log (7))\right ) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=-\int 2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \, dx+\int \frac {4^{-x} \left (1+2 x^2 (4+\log (7))\right ) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{x^2 (4+\log (7))+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=-\int 2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \, dx+\int \left (\frac {4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)}+\frac {2^{1-2 x} x^2 (4+\log (7)) \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)}\right ) \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=(4+\log (7)) \int \frac {2^{1-2 x} x^2 \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)} \, dx-\int 2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \, dx+\int \frac {4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{4 x^2 \left (1+\frac {\log (7)}{4}\right )+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ &=(4+\log (7)) \int \frac {2^{1-2 x} x^2 \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{x^2 (4+\log (7))+\log (x)} \, dx-\int 2^{1-2 x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \, dx+\int \frac {4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x}{x^2 (4+\log (7))+\log (x)} \, dx+\int 4^{-x} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )^x \log \left (\frac {1}{4} \left (4 \left (1+\frac {\log (7)}{4}\right )+\frac {\log (x)}{x^2}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.13, size = 18, normalized size = 1.00 \begin {gather*} 4^{-x} \left (4+\log (7)+\frac {\log (x)}{x^2}\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 21, normalized size = 1.17 \begin {gather*} \left (\frac {x^{2} \log \relax (7) + 4 \, x^{2} + \log \relax (x)}{4 \, x^{2}}\right )^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{2} \log \relax (7) + 4 \, x^{2} + \log \relax (x)\right )} \log \left (\frac {x^{2} \log \relax (7) + 4 \, x^{2} + \log \relax (x)}{4 \, x^{2}}\right ) - 2 \, \log \relax (x) + 1\right )} \left (\frac {x^{2} \log \relax (7) + 4 \, x^{2} + \log \relax (x)}{4 \, x^{2}}\right )^{x}}{x^{2} \log \relax (7) + 4 \, x^{2} + \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 236, normalized size = 13.11
method | result | size |
risch | \({\mathrm e}^{-\frac {x \left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )}{x^{2}}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )}{x^{2}}\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )\right )+4 \ln \relax (x )+4 \ln \relax (2)-2 \ln \left (\ln \relax (x )+x^{2} \ln \relax (7)+4 x^{2}\right )\right )}{2}}\) | \(236\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 26, normalized size = 1.44 \begin {gather*} e^{\left (-2 \, x \log \relax (2) + x \log \left (x^{2} {\left (\log \relax (7) + 4\right )} + \log \relax (x)\right ) - 2 \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 29, normalized size = 1.61 \begin {gather*} \frac {{\left (\frac {1}{x^2}\right )}^x\,{\left (\ln \relax (x)+x^2\,\ln \relax (7)+4\,x^2\right )}^x}{2^{2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 24, normalized size = 1.33 \begin {gather*} e^{x \log {\left (\frac {\frac {x^{2} \log {\relax (7 )}}{4} + x^{2} + \frac {\log {\relax (x )}}{4}}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________