Optimal. Leaf size=24 \[ 5 e^{-x-4 \left (-2+\frac {e^{e^x}}{3}\right ) x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {12, 2274, 6706} \begin {gather*} 5 e^{\frac {1}{3} \left (-4 e^{e^x} x^2+24 x^2-3 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \exp \left (\frac {1}{3} \left (-3 x+24 x^2-4 e^{e^x} x^2+3 \log \left (\frac {5}{4}\right )\right )\right ) \left (-12+192 x+e^{e^x} \left (-32 x-16 e^x x^2\right )\right ) \, dx\\ &=\frac {1}{3} \int \frac {5}{4} e^{\frac {1}{3} \left (-3 x+24 x^2-4 e^{e^x} x^2\right )} \left (-12+192 x+e^{e^x} \left (-32 x-16 e^x x^2\right )\right ) \, dx\\ &=\frac {5}{12} \int e^{\frac {1}{3} \left (-3 x+24 x^2-4 e^{e^x} x^2\right )} \left (-12+192 x+e^{e^x} \left (-32 x-16 e^x x^2\right )\right ) \, dx\\ &=5 e^{\frac {1}{3} \left (-3 x+24 x^2-4 e^{e^x} x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 21, normalized size = 0.88 \begin {gather*} 5 e^{-\frac {1}{3} x \left (3+4 \left (-6+e^{e^x}\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 22, normalized size = 0.92 \begin {gather*} 4 \, e^{\left (-\frac {4}{3} \, x^{2} e^{\left (e^{x}\right )} + 8 \, x^{2} - x + \log \left (\frac {5}{4}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 22, normalized size = 0.92 \begin {gather*} 4 \, e^{\left (-\frac {4}{3} \, x^{2} e^{\left (e^{x}\right )} + 8 \, x^{2} - x + \log \left (\frac {5}{4}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 18, normalized size = 0.75
method | result | size |
risch | \(5 \,{\mathrm e}^{-\frac {x \left (4 x \,{\mathrm e}^{{\mathrm e}^{x}}-24 x +3\right )}{3}}\) | \(18\) |
norman | \(4 \,{\mathrm e}^{-\frac {4 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}}{3}+\ln \left (\frac {5}{4}\right )+8 x^{2}-x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 20, normalized size = 0.83 \begin {gather*} 5 \, e^{\left (-\frac {4}{3} \, x^{2} e^{\left (e^{x}\right )} + 8 \, x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 21, normalized size = 0.88 \begin {gather*} 5\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{8\,x^2}\,{\mathrm {e}}^{-\frac {4\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 20, normalized size = 0.83 \begin {gather*} 5 e^{- \frac {4 x^{2} e^{e^{x}}}{3} + 8 x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________