Optimal. Leaf size=24 \[ -1+\frac {4}{x}+x \log \left (-1+\log (x)+e^{-5-x} \log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2+e^{5+x} \left (4+x^2\right )+\left (-4-4 e^{5+x}-x^3\right ) \log (x)+\left (-e^{5+x} x^2+\left (x^2+e^{5+x} x^2\right ) \log (x)\right ) \log \left (e^{-5-x} \left (-e^{5+x}+\left (1+e^{5+x}\right ) \log (x)\right )\right )}{-e^{5+x} x^2+\left (x^2+e^{5+x} x^2\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1-x \log (x)+x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )}+\frac {4+x^2-4 \log (x)-x^2 \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right )+x^2 \log (x) \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right )}{x^2 (-1+\log (x))}\right ) \, dx\\ &=-\int \frac {1-x \log (x)+x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {4+x^2-4 \log (x)-x^2 \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right )+x^2 \log (x) \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right )}{x^2 (-1+\log (x))} \, dx\\ &=-\int \left (\frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )}-\frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )}+\frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )}\right ) \, dx+\int \left (\frac {4+x^2-4 \log (x)}{x^2 (-1+\log (x))}+\log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right )\right ) \, dx\\ &=\int \frac {4+x^2-4 \log (x)}{x^2 (-1+\log (x))} \, dx-\int \frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx-\int \frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \, dx\\ &=\int \left (-\frac {4}{x^2}+\frac {1}{-1+\log (x)}\right ) \, dx-\int \frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx-\int \frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \, dx\\ &=\frac {4}{x}+\int \frac {1}{-1+\log (x)} \, dx-\int \frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx-\int \frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \, dx\\ &=\frac {4}{x}-\int \frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx-\int \frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \, dx+\operatorname {Subst}\left (\int \frac {e^x}{-1+x} \, dx,x,\log (x)\right )\\ &=\frac {4}{x}+e \text {Ei}(-1+\log (x))-\int \frac {1}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \frac {x \log (x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx-\int \frac {x \log ^2(x)}{(-1+\log (x)) \left (-e^{5+x}+\log (x)+e^{5+x} \log (x)\right )} \, dx+\int \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 0.96 \begin {gather*} \frac {4}{x}+x \log \left (-1+\left (1+e^{-5-x}\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 34, normalized size = 1.42 \begin {gather*} \frac {x^{2} \log \left ({\left ({\left (e^{\left (x + 5\right )} + 1\right )} \log \relax (x) - e^{\left (x + 5\right )}\right )} e^{\left (-x - 5\right )}\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 37, normalized size = 1.54 \begin {gather*} -\frac {x^{3} - x^{2} \log \left (e^{\left (x + 5\right )} \log \relax (x) - e^{\left (x + 5\right )} + \log \relax (x)\right ) + 5 \, x^{2} - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 200, normalized size = 8.33
method | result | size |
risch | \(-x \ln \left ({\mathrm e}^{x}\right )+\frac {-i \pi \,x^{2} \mathrm {csgn}\left (i \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right )+i \pi \,x^{2} \mathrm {csgn}\left (i \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right )^{2}+8+i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x} \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )\right )^{3}+2 x^{2} \ln \left (\left (\ln \relax (x )-1\right ) {\mathrm e}^{5+x}+\ln \relax (x )\right )-10 x^{2}}{2 x}\) | \(200\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 37, normalized size = 1.54 \begin {gather*} -\frac {x^{3} - x^{2} \log \left ({\left (e^{\left (x + 5\right )} + 1\right )} \log \relax (x) - e^{\left (x + 5\right )}\right ) + 5 \, x^{2} - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 22, normalized size = 0.92 \begin {gather*} x\,\ln \left (\ln \relax (x)+{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-5}\,\ln \relax (x)-1\right )+\frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.97, size = 31, normalized size = 1.29 \begin {gather*} x \log {\left (\frac {\left (\left (e^{5} e^{x} + 1\right ) \log {\relax (x )} - e^{5} e^{x}\right ) e^{- x}}{e^{5}} \right )} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________