Optimal. Leaf size=27 \[ -1+e^{12 \left (-\frac {4}{x}+x-x^2+e^5 x (3+x)\right )}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 32, normalized size of antiderivative = 1.19, number of steps used = 3, number of rules used = 2, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {14, 6706} \begin {gather*} \exp \left (-12 \left (1-e^5\right ) x^2+12 \left (1+3 e^5\right ) x-\frac {48}{x}\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {12 \exp \left (-\frac {48}{x}+12 \left (1+3 e^5\right ) x+12 \left (-1+e^5\right ) x^2\right ) \left (4+\left (1+3 e^5\right ) x^2-2 \left (1-e^5\right ) x^3\right )}{x^2}\right ) \, dx\\ &=x+12 \int \frac {\exp \left (-\frac {48}{x}+12 \left (1+3 e^5\right ) x+12 \left (-1+e^5\right ) x^2\right ) \left (4+\left (1+3 e^5\right ) x^2-2 \left (1-e^5\right ) x^3\right )}{x^2} \, dx\\ &=e^{-\frac {48}{x}+12 \left (1+3 e^5\right ) x-12 \left (1-e^5\right ) x^2}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 30, normalized size = 1.11 \begin {gather*} e^{-\frac {48}{x}+12 \left (1+3 e^5\right ) x+12 \left (-1+e^5\right ) x^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 31, normalized size = 1.15 \begin {gather*} x + e^{\left (-\frac {12 \, {\left (x^{3} - x^{2} - {\left (x^{3} + 3 \, x^{2}\right )} e^{5} + 4\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 31, normalized size = 1.15 \begin {gather*} x + e^{\left (\frac {12 \, {\left (x^{3} e^{5} - x^{3} + 3 \, x^{2} e^{5} + x^{2} - 4\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 32, normalized size = 1.19
method | result | size |
risch | \(x +{\mathrm e}^{\frac {12 x^{3} {\mathrm e}^{5}+36 x^{2} {\mathrm e}^{5}-12 x^{3}+12 x^{2}-48}{x}}\) | \(32\) |
norman | \(\frac {x^{2}+x \,{\mathrm e}^{\frac {\left (12 x^{3}+36 x^{2}\right ) {\mathrm e}^{5}-12 x^{3}+12 x^{2}-48}{x}}}{x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 29, normalized size = 1.07 \begin {gather*} x + e^{\left (12 \, x^{2} e^{5} - 12 \, x^{2} + 36 \, x e^{5} + 12 \, x - \frac {48}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.19, size = 33, normalized size = 1.22 \begin {gather*} x+{\mathrm {e}}^{12\,x^2\,{\mathrm {e}}^5}\,{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^{-12\,x^2}\,{\mathrm {e}}^{-\frac {48}{x}}\,{\mathrm {e}}^{36\,x\,{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 29, normalized size = 1.07 \begin {gather*} x + e^{\frac {- 12 x^{3} + 12 x^{2} + \left (12 x^{3} + 36 x^{2}\right ) e^{5} - 48}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________