Optimal. Leaf size=28 \[ \frac {4 \log (\log (3))}{e^5 \left (5+\log \left (\frac {2}{(-4+x) \log (5 (1+x))}\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 36, normalized size of antiderivative = 1.29, number of steps used = 5, number of rules used = 4, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {12, 6688, 6711, 32} \begin {gather*} -\frac {4 \log (\log (3))}{5 e^5 \left (\frac {5}{\log \left (-\frac {2}{(4-x) \log (5 (x+1))}\right )}+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (3)) \int \frac {-16+4 x+(4+4 x) \log (5+5 x)}{e^5 \left (-100-75 x+25 x^2\right ) \log (5+5 x)+e^5 \left (-40-30 x+10 x^2\right ) \log (5+5 x) \log \left (\frac {2}{(-4+x) \log (5+5 x)}\right )+e^5 \left (-4-3 x+x^2\right ) \log (5+5 x) \log ^2\left (\frac {2}{(-4+x) \log (5+5 x)}\right )} \, dx\\ &=\log (\log (3)) \int \frac {4 (4-x-(1+x) \log (5 (1+x)))}{e^5 \left (4+3 x-x^2\right ) \log (5+5 x) \left (5+\log \left (\frac {2}{(-4+x) \log (5 (1+x))}\right )\right )^2} \, dx\\ &=\frac {(4 \log (\log (3))) \int \frac {4-x-(1+x) \log (5 (1+x))}{\left (4+3 x-x^2\right ) \log (5+5 x) \left (5+\log \left (\frac {2}{(-4+x) \log (5 (1+x))}\right )\right )^2} \, dx}{e^5}\\ &=\frac {(4 \log (\log (3))) \operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,\frac {5}{\log \left (\frac {2}{(-4+x) \log (5 (1+x))}\right )}\right )}{5 e^5}\\ &=-\frac {4 \log (\log (3))}{5 e^5 \left (1+\frac {5}{\log \left (-\frac {2}{(4-x) \log (5 (1+x))}\right )}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 1.00 \begin {gather*} \frac {4 \log (\log (3))}{e^5 \left (5+\log \left (\frac {2}{(-4+x) \log (5 (1+x))}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 31, normalized size = 1.11 \begin {gather*} \frac {4 \, \log \left (\log \relax (3)\right )}{e^{5} \log \left (\frac {2}{{\left (x - 4\right )} \log \left (5 \, x + 5\right )}\right ) + 5 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.36, size = 735, normalized size = 26.25 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 162, normalized size = 5.79
method | result | size |
risch | \(\frac {8 i \ln \left (\ln \relax (3)\right ) {\mathrm e}^{-5}}{\pi \,\mathrm {csgn}\left (\frac {i}{x -4}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right ) \left (x -4\right )}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x -4}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right ) \left (x -4\right )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right ) \left (x -4\right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i}{\ln \left (5 x +5\right ) \left (x -4\right )}\right )^{3}+2 i \ln \relax (2)-2 i \ln \left (x -4\right )-2 i \ln \left (\ln \left (5 x +5\right )\right )+10 i}\) | \(162\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 35, normalized size = 1.25 \begin {gather*} \frac {4 \, \log \left (\log \relax (3)\right )}{{\left (\log \relax (2) + 5\right )} e^{5} - e^{5} \log \left (x - 4\right ) - e^{5} \log \left (\log \relax (5) + \log \left (x + 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 27, normalized size = 0.96 \begin {gather*} \frac {4\,{\mathrm {e}}^{-5}\,\ln \left (\ln \relax (3)\right )}{\ln \left (\frac {2}{\ln \left (5\,x+5\right )\,\left (x-4\right )}\right )+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 27, normalized size = 0.96 \begin {gather*} \frac {4 \log {\left (\log {\relax (3 )} \right )}}{e^{5} \log {\left (\frac {2}{\left (x - 4\right ) \log {\left (5 x + 5 \right )}} \right )} + 5 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________