Optimal. Leaf size=22 \[ \log \left (-2+e^{-3+\left (-8-3 x+3 e^{-x} x\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 71.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{-2 x} x^2 \left (9+\frac {e^x (-48-18 x)}{x}+\frac {e^{2 x} \left (61+48 x+9 x^2\right )}{x^2}\right )\right ) \left (18-18 x+\frac {e^x \left (-48+12 x+18 x^2\right )}{x}+\frac {e^{2 x} \left (48 x+18 x^2\right )}{x^2}\right )}{-\frac {2 e^{2 x}}{x}+\frac {\exp \left (2 x+e^{-2 x} x^2 \left (9+\frac {e^x (-48-18 x)}{x}+\frac {e^{2 x} \left (61+48 x+9 x^2\right )}{x^2}\right )\right )}{x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 e^{-2 x} \left (-3 (-1+x) x+e^{2 x} (8+3 x)+e^x \left (-8+2 x+3 x^2\right )\right )}{1-2 \exp \left (-61+48 \left (-1+e^{-x}\right ) x-9 e^{-2 x} \left (-1+e^x\right )^2 x^2\right )} \, dx\\ &=6 \int \frac {e^{-2 x} \left (-3 (-1+x) x+e^{2 x} (8+3 x)+e^x \left (-8+2 x+3 x^2\right )\right )}{1-2 \exp \left (-61+48 \left (-1+e^{-x}\right ) x-9 e^{-2 x} \left (-1+e^x\right )^2 x^2\right )} \, dx\\ &=6 \int \left (e^{-2 x} \left (-1+e^x+x\right ) \left (8 e^x-3 x+3 e^x x\right )-\frac {2 e^{-2 x+48 \left (-1+e^{-x}\right ) x} \left (-8 e^x+8 e^{2 x}+3 x+2 e^x x+3 e^{2 x} x-3 x^2+3 e^x x^2\right )}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}\right ) \, dx\\ &=6 \int e^{-2 x} \left (-1+e^x+x\right ) \left (8 e^x-3 x+3 e^x x\right ) \, dx-12 \int \frac {e^{-2 x+48 \left (-1+e^{-x}\right ) x} \left (-8 e^x+8 e^{2 x}+3 x+2 e^x x+3 e^{2 x} x-3 x^2+3 e^x x^2\right )}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=6 \int \left (8+3 x-3 e^{-2 x} (-1+x) x+e^{-x} \left (-8+2 x+3 x^2\right )\right ) \, dx-12 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} \left (-8 e^x+8 e^{2 x}+3 x+2 e^x x+3 e^{2 x} x-3 x^2+3 e^x x^2\right )}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=48 x+9 x^2+6 \int e^{-x} \left (-8+2 x+3 x^2\right ) \, dx-12 \int \left (-\frac {8 e^{x-2 e^{-x} \left (-24+25 e^x\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}+\frac {8 e^{2 x-2 e^{-x} \left (-24+25 e^x\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}+\frac {3 e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}+\frac {2 e^{x-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}+\frac {3 e^{2 x-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}-\frac {3 e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}+\frac {3 e^{x-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}}\right ) \, dx-18 \int e^{-2 x} (-1+x) x \, dx\\ &=48 x+9 x^2+6 \int \left (-8 e^{-x}+2 e^{-x} x+3 e^{-x} x^2\right ) \, dx-18 \int \left (-e^{-2 x} x+e^{-2 x} x^2\right ) \, dx-24 \int \frac {e^{x-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{2 x-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{x-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+96 \int \frac {e^{x-2 e^{-x} \left (-24+25 e^x\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-96 \int \frac {e^{2 x-2 e^{-x} \left (-24+25 e^x\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=48 x+9 x^2+12 \int e^{-x} x \, dx+18 \int e^{-2 x} x \, dx-18 \int e^{-2 x} x^2 \, dx+18 \int e^{-x} x^2 \, dx-24 \int \frac {e^{-49 x+48 e^{-x} x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{48 \left (-1+e^{-x}\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-49 x+48 e^{-x} x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-48 \int e^{-x} \, dx-96 \int \frac {e^{48 \left (-1+e^{-x}\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+96 \int \frac {e^{-49 x+48 e^{-x} x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=48 e^{-x}+48 x-9 e^{-2 x} x-12 e^{-x} x+9 x^2+9 e^{-2 x} x^2-18 e^{-x} x^2+9 \int e^{-2 x} \, dx+12 \int e^{-x} \, dx-18 \int e^{-2 x} x \, dx-24 \int \frac {e^{-49 x+48 e^{-x} x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int e^{-x} x \, dx-36 \int \frac {e^{48 \left (-1+e^{-x}\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-49 x+48 e^{-x} x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-96 \int \frac {e^{48 \left (-1+e^{-x}\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+96 \int \frac {e^{-49 x+48 e^{-x} x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=-\frac {9}{2} e^{-2 x}+36 e^{-x}+48 x-48 e^{-x} x+9 x^2+9 e^{-2 x} x^2-18 e^{-x} x^2-9 \int e^{-2 x} \, dx-24 \int \frac {e^{-49 x+48 e^{-x} x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int e^{-x} \, dx-36 \int \frac {e^{48 \left (-1+e^{-x}\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-49 x+48 e^{-x} x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-96 \int \frac {e^{48 \left (-1+e^{-x}\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+96 \int \frac {e^{-49 x+48 e^{-x} x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ &=48 x-48 e^{-x} x+9 x^2+9 e^{-2 x} x^2-18 e^{-x} x^2-24 \int \frac {e^{-49 x+48 e^{-x} x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{48 \left (-1+e^{-x}\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+36 \int \frac {e^{-2 e^{-x} \left (-24+25 e^x\right ) x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-36 \int \frac {e^{-49 x+48 e^{-x} x} x^2}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx-96 \int \frac {e^{48 \left (-1+e^{-x}\right ) x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx+96 \int \frac {e^{-49 x+48 e^{-x} x}}{2 e^{48 \left (-1+e^{-x}\right ) x}-e^{61+9 e^{-2 x} \left (-1+e^x\right )^2 x^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 180.00, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 50, normalized size = 2.27 \begin {gather*} \log \left (e^{\left ({\left ({\left (9 \, x^{2} + 48 \, x + 61\right )} e^{\left (2 \, x - 2 \, \log \relax (x)\right )} - 6 \, {\left (3 \, x + 8\right )} e^{\left (x - \log \relax (x)\right )} + 9\right )} e^{\left (-2 \, x + 2 \, \log \relax (x)\right )}\right )} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, {\left ({\left (3 \, x^{2} + 8 \, x\right )} e^{\left (2 \, x - 2 \, \log \relax (x)\right )} + {\left (3 \, x^{2} + 2 \, x - 8\right )} e^{\left (x - \log \relax (x)\right )} - 3 \, x + 3\right )} e^{\left ({\left ({\left (9 \, x^{2} + 48 \, x + 61\right )} e^{\left (2 \, x - 2 \, \log \relax (x)\right )} - 6 \, {\left (3 \, x + 8\right )} e^{\left (x - \log \relax (x)\right )} + 9\right )} e^{\left (-2 \, x + 2 \, \log \relax (x)\right )}\right )}}{x e^{\left ({\left ({\left (9 \, x^{2} + 48 \, x + 61\right )} e^{\left (2 \, x - 2 \, \log \relax (x)\right )} - 6 \, {\left (3 \, x + 8\right )} e^{\left (x - \log \relax (x)\right )} + 9\right )} e^{\left (-2 \, x + 2 \, \log \relax (x)\right )} + 2 \, x - 2 \, \log \relax (x)\right )} - 2 \, x e^{\left (2 \, x - 2 \, \log \relax (x)\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 123, normalized size = 5.59
method | result | size |
risch | \(9 x^{2}+48 x +\left (-18 x^{2}-48 x \right ) {\mathrm e}^{-x}+9 x^{2} {\mathrm e}^{-2 x}-\left (\frac {\left (9 x^{2}+48 x +61\right ) {\mathrm e}^{2 x}}{x^{2}}+\frac {\left (-18 x -48\right ) {\mathrm e}^{x}}{x}+9\right ) x^{2} {\mathrm e}^{-2 x}+\ln \left ({\mathrm e}^{-\left (-9 \,{\mathrm e}^{2 x} x^{2}+18 \,{\mathrm e}^{x} x^{2}-48 x \,{\mathrm e}^{2 x}+48 \,{\mathrm e}^{x} x -9 x^{2}-61 \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x}}-2\right )\) | \(123\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.84, size = 81, normalized size = 3.68 \begin {gather*} 9 \, x^{2} - 6 \, {\left (3 \, x^{2} + 8 \, x\right )} e^{\left (-x\right )} + 48 \, x + \log \left (-{\left (2 \, e^{\left (18 \, x^{2} e^{\left (-x\right )} + 48 \, x e^{\left (-x\right )}\right )} - e^{\left (9 \, x^{2} e^{\left (-2 \, x\right )} + 9 \, x^{2} + 48 \, x + 61\right )}\right )} e^{\left (-9 \, x^{2} - 48 \, x - 61\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.28, size = 44, normalized size = 2.00 \begin {gather*} \ln \left ({\mathrm {e}}^{48\,x}\,{\mathrm {e}}^{61}\,{\mathrm {e}}^{-48\,x\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{9\,x^2}\,{\mathrm {e}}^{9\,x^2\,{\mathrm {e}}^{-2\,x}}\,{\mathrm {e}}^{-18\,x^2\,{\mathrm {e}}^{-x}}-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.38, size = 44, normalized size = 2.00 \begin {gather*} \log {\left (e^{x^{2} \left (9 + \frac {\left (- 18 x - 48\right ) e^{x}}{x} + \frac {\left (9 x^{2} + 48 x + 61\right ) e^{2 x}}{x^{2}}\right ) e^{- 2 x}} - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________