Optimal. Leaf size=28 \[ 2+x+\log \left (\frac {4+x}{e^x-(3-x)^2-\frac {1}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4-6 x-70 x^2+e^x x^2+23 x^3+3 x^4-x^5}{-4 x-37 x^2+15 x^3+2 x^4-x^5+e^x \left (4 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+6 x+70 x^2-e^x x^2-23 x^3-3 x^4+x^5}{x (4+x) \left (1+9 x-e^x x-6 x^2+x^3\right )} \, dx\\ &=\int \left (\frac {1}{4+x}+\frac {1+x+15 x^2-8 x^3+x^4}{x \left (1+9 x-e^x x-6 x^2+x^3\right )}\right ) \, dx\\ &=\log (4+x)+\int \frac {1+x+15 x^2-8 x^3+x^4}{x \left (1+9 x-e^x x-6 x^2+x^3\right )} \, dx\\ &=\log (4+x)+\int \left (\frac {1}{1+9 x-e^x x-6 x^2+x^3}+\frac {1}{x \left (1+9 x-e^x x-6 x^2+x^3\right )}+\frac {15 x}{1+9 x-e^x x-6 x^2+x^3}-\frac {8 x^2}{1+9 x-e^x x-6 x^2+x^3}+\frac {x^3}{1+9 x-e^x x-6 x^2+x^3}\right ) \, dx\\ &=\log (4+x)-8 \int \frac {x^2}{1+9 x-e^x x-6 x^2+x^3} \, dx+15 \int \frac {x}{1+9 x-e^x x-6 x^2+x^3} \, dx+\int \frac {1}{1+9 x-e^x x-6 x^2+x^3} \, dx+\int \frac {1}{x \left (1+9 x-e^x x-6 x^2+x^3\right )} \, dx+\int \frac {x^3}{1+9 x-e^x x-6 x^2+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 30, normalized size = 1.07 \begin {gather*} x+\log (x)+\log (4+x)-\log \left (1+9 x-e^x x-6 x^2+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 32, normalized size = 1.14 \begin {gather*} x + \log \left (x + 4\right ) - \log \left (-\frac {x^{3} - 6 \, x^{2} - x e^{x} + 9 \, x + 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 30, normalized size = 1.07 \begin {gather*} x - \log \left (-x^{3} + 6 \, x^{2} + x e^{x} - 9 \, x - 1\right ) + \log \left (x + 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.07
method | result | size |
norman | \(x -\ln \left (x^{3}-6 x^{2}-{\mathrm e}^{x} x +9 x +1\right )+\ln \relax (x )+\ln \left (4+x \right )\) | \(30\) |
risch | \(\ln \left (4+x \right )+x -\ln \left ({\mathrm e}^{x}-\frac {x^{3}-6 x^{2}+9 x +1}{x}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 32, normalized size = 1.14 \begin {gather*} x + \log \left (x + 4\right ) - \log \left (-\frac {x^{3} - 6 \, x^{2} - x e^{x} + 9 \, x + 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.03, size = 29, normalized size = 1.04 \begin {gather*} x+\ln \left (x+4\right )-\ln \left (9\,x-x\,{\mathrm {e}}^x-6\,x^2+x^3+1\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 0.93 \begin {gather*} x + \log {\left (x + 4 \right )} - \log {\left (e^{x} + \frac {- x^{3} + 6 x^{2} - 9 x - 1}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________