Optimal. Leaf size=31 \[ -x+\left (e^{5 x-\frac {\log (1+x)}{x}}+\left (5+e^4\right )^2\right ) x+\log (2) \]
________________________________________________________________________________________
Rubi [F] time = 1.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x+24 x^2+e^8 \left (x+x^2\right )+e^4 \left (10 x+10 x^2\right )+e^{\frac {5 x^2-\log (1+x)}{x}} \left (6 x^2+5 x^3+(1+x) \log (1+x)\right )}{x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24 x+24 x^2+e^8 \left (x+x^2\right )+e^4 \left (10 x+10 x^2\right )+e^{\frac {5 x^2-\log (1+x)}{x}} \left (6 x^2+5 x^3+(1+x) \log (1+x)\right )}{x (1+x)} \, dx\\ &=\int \left (24+10 e^4+e^8+e^{5 x} x (1+x)^{-1-\frac {1}{x}} (6+5 x)+\frac {e^{5 x} (1+x)^{-1/x} \log (1+x)}{x}\right ) \, dx\\ &=\left (24+10 e^4+e^8\right ) x+\int e^{5 x} x (1+x)^{-1-\frac {1}{x}} (6+5 x) \, dx+\int \frac {e^{5 x} (1+x)^{-1/x} \log (1+x)}{x} \, dx\\ &=\left (24+10 e^4+e^8\right ) x+\log (1+x) \int \frac {e^{5 x} (1+x)^{-1/x}}{x} \, dx+\int \left (6 e^{5 x} x (1+x)^{-1-\frac {1}{x}}+5 e^{5 x} x^2 (1+x)^{-1-\frac {1}{x}}\right ) \, dx-\int \frac {\int \frac {e^{5 x} (1+x)^{-1/x}}{x} \, dx}{1+x} \, dx\\ &=\left (24+10 e^4+e^8\right ) x+5 \int e^{5 x} x^2 (1+x)^{-1-\frac {1}{x}} \, dx+6 \int e^{5 x} x (1+x)^{-1-\frac {1}{x}} \, dx+\log (1+x) \int \frac {e^{5 x} (1+x)^{-1/x}}{x} \, dx-\int \frac {\int \frac {e^{5 x} (1+x)^{-1/x}}{x} \, dx}{1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 29, normalized size = 0.94 \begin {gather*} \left (24+10 e^4+e^8\right ) x+e^{5 x} x (1+x)^{-1/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 32, normalized size = 1.03 \begin {gather*} x e^{8} + 10 \, x e^{4} + x e^{\left (\frac {5 \, x^{2} - \log \left (x + 1\right )}{x}\right )} + 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 32, normalized size = 1.03 \begin {gather*} x e^{8} + 10 \, x e^{4} + x e^{\left (\frac {5 \, x^{2} - \log \left (x + 1\right )}{x}\right )} + 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 29, normalized size = 0.94
method | result | size |
risch | \(x \left (x +1\right )^{-\frac {1}{x}} {\mathrm e}^{5 x}+10 x \,{\mathrm e}^{4}+x \,{\mathrm e}^{8}+24 x\) | \(29\) |
norman | \(x \,{\mathrm e}^{\frac {-\ln \left (x +1\right )+5 x^{2}}{x}}+\left ({\mathrm e}^{8}+10 \,{\mathrm e}^{4}+24\right ) x\) | \(33\) |
default | \(24 x +x \,{\mathrm e}^{8}+x \,{\mathrm e}^{\frac {-\ln \left (x +1\right )+5 x^{2}}{x}}+10 x \,{\mathrm e}^{4}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 58, normalized size = 1.87 \begin {gather*} {\left (x - \log \left (x + 1\right )\right )} e^{8} + 10 \, {\left (x - \log \left (x + 1\right )\right )} e^{4} + x e^{\left (5 \, x - \frac {\log \left (x + 1\right )}{x}\right )} + e^{8} \log \left (x + 1\right ) + 10 \, e^{4} \log \left (x + 1\right ) + 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 28, normalized size = 0.90 \begin {gather*} 24\,x+10\,x\,{\mathrm {e}}^4+x\,{\mathrm {e}}^8+\frac {x\,{\mathrm {e}}^{5\,x}}{{\left (x+1\right )}^{1/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.68, size = 26, normalized size = 0.84 \begin {gather*} x e^{\frac {5 x^{2} - \log {\left (x + 1 \right )}}{x}} + x \left (24 + 10 e^{4} + e^{8}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________