Optimal. Leaf size=24 \[ \log (x)-\frac {5+x}{3+x+\frac {-x+\log (\log (2))}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 4, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2074, 618, 206, 638} \begin {gather*} \log (x)-\frac {3 x-\log (\log (2))}{x^2+2 x+\log (\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}+\frac {3}{2 x+x^2+\log (\log (2))}+\frac {2 (-4 \log (\log (2))-x (3+\log (\log (2))))}{\left (2 x+x^2+\log (\log (2))\right )^2}\right ) \, dx\\ &=\log (x)+2 \int \frac {-4 \log (\log (2))-x (3+\log (\log (2)))}{\left (2 x+x^2+\log (\log (2))\right )^2} \, dx+3 \int \frac {1}{2 x+x^2+\log (\log (2))} \, dx\\ &=\log (x)-\frac {3 x-\log (\log (2))}{2 x+x^2+\log (\log (2))}-3 \int \frac {1}{2 x+x^2+\log (\log (2))} \, dx-6 \operatorname {Subst}\left (\int \frac {1}{-x^2+4 (1-\log (\log (2)))} \, dx,x,2+2 x\right )\\ &=\log (x)-\frac {3 \tanh ^{-1}\left (\frac {1+x}{\sqrt {1-\log (\log (2))}}\right )}{\sqrt {1-\log (\log (2))}}-\frac {3 x-\log (\log (2))}{2 x+x^2+\log (\log (2))}+6 \operatorname {Subst}\left (\int \frac {1}{-x^2+4 (1-\log (\log (2)))} \, dx,x,2+2 x\right )\\ &=\log (x)-\frac {3 x-\log (\log (2))}{2 x+x^2+\log (\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.96 \begin {gather*} \log (x)+\frac {-3 x+\log (\log (2))}{2 x+x^2+\log (\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 35, normalized size = 1.46 \begin {gather*} \frac {{\left (x^{2} + 2 \, x\right )} \log \relax (x) + {\left (\log \relax (x) + 1\right )} \log \left (\log \relax (2)\right ) - 3 \, x}{x^{2} + 2 \, x + \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 27, normalized size = 1.12 \begin {gather*} -\frac {3 \, x - \log \left (\log \relax (2)\right )}{x^{2} + 2 \, x + \log \left (\log \relax (2)\right )} + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 1.00
method | result | size |
norman | \(\frac {-3 x +\ln \left (\ln \relax (2)\right )}{x^{2}+\ln \left (\ln \relax (2)\right )+2 x}+\ln \relax (x )\) | \(24\) |
risch | \(\frac {-3 x +\ln \left (\ln \relax (2)\right )}{x^{2}+\ln \left (\ln \relax (2)\right )+2 x}+\ln \relax (x )\) | \(24\) |
default | \(-\frac {3 x -\ln \left (\ln \relax (2)\right )}{x^{2}+\ln \left (\ln \relax (2)\right )+2 x}+\ln \relax (x )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 26, normalized size = 1.08 \begin {gather*} -\frac {3 \, x - \log \left (\log \relax (2)\right )}{x^{2} + 2 \, x + \log \left (\log \relax (2)\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 26, normalized size = 1.08 \begin {gather*} \ln \relax (x)-\frac {3\,x-\ln \left (\ln \relax (2)\right )}{x^2+2\,x+\ln \left (\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.69, size = 22, normalized size = 0.92 \begin {gather*} \frac {- 3 x + \log {\left (\log {\relax (2 )} \right )}}{x^{2} + 2 x + \log {\left (\log {\relax (2 )} \right )}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________