Optimal. Leaf size=34 \[ \frac {\log \left (\frac {1}{5} e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-x^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 32.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 x^3 \log (x) \log ^2(3 x)+e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}} \left (x^2 \log (x) \log ^2(3 x)+e^{\frac {25}{\log (3 x)}} \left (-25 \log (x)-\log (x) \log ^2(3 x)\right )\right )+\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}} x \log ^2(3 x)+5 x^3 \log ^2(3 x)\right ) \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}}-5 x^2\right )\right )}{e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}} x^2 \log ^2(x) \log ^2(3 x)-5 x^4 \log ^2(x) \log ^2(3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10 x^3 \log (x) \log ^2(3 x)+e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}} \left (x^2 \log (x) \log ^2(3 x)+e^{\frac {25}{\log (3 x)}} \left (-25 \log (x)-\log (x) \log ^2(3 x)\right )\right )+\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}} x \log ^2(3 x)+5 x^3 \log ^2(3 x)\right ) \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}+x^2}{x}}-5 x^2\right )\right )}{x^2 \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right ) \log ^2(x) \log ^2(3 x)} \, dx\\ &=\int \left (-\frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}} \left (25+\log ^2(3 x)\right )}{x^2 \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right ) \log (x) \log ^2(3 x)}+\frac {-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x} x \log (x)+10 x^2 \log (x)+e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x} \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )-5 x^2 \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log ^2(x)}\right ) \, dx\\ &=-\int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}} \left (25+\log ^2(3 x)\right )}{x^2 \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right ) \log (x) \log ^2(3 x)} \, dx+\int \frac {-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x} x \log (x)+10 x^2 \log (x)+e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x} \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )-5 x^2 \log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log ^2(x)} \, dx\\ &=-\int \left (-\frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3)+\log (x)}}}{x}+x}+5 x^2\right ) \log (x)}-\frac {25 e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x) \log ^2(3 x)}\right ) \, dx+\int \left (-\frac {5 (-2+x) x}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)}+\frac {x \log (x)-\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \log ^2(x)}\right ) \, dx\\ &=-\left (5 \int \frac {(-2+x) x}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx\right )+25 \int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x) \log ^2(3 x)} \, dx+\int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3)+\log (x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx+\int \frac {x \log (x)-\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \log ^2(x)} \, dx\\ &=-\left (5 \int \left (-\frac {2 x}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)}+\frac {x^2}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)}\right ) \, dx\right )+25 \int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x) \log ^2(3 x)} \, dx+\int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3)+\log (x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx+\int \left (\frac {1}{\log (x)}-\frac {\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \log ^2(x)}\right ) \, dx\\ &=-\left (5 \int \frac {x^2}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx\right )+10 \int \frac {x}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx+25 \int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x) \log ^2(3 x)} \, dx+\int \frac {1}{\log (x)} \, dx+\int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3)+\log (x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx-\int \frac {\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \log ^2(x)} \, dx\\ &=\text {li}(x)-5 \int \frac {x^2}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx+10 \int \frac {x}{\left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx+25 \int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}+5 x^2\right ) \log (x) \log ^2(3 x)} \, dx+\int \frac {e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x+\frac {25}{\log (3 x)}}}{x^2 \left (-e^{\frac {e^{\frac {25}{\log (3)+\log (x)}}}{x}+x}+5 x^2\right ) \log (x)} \, dx-\int \frac {\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.76, size = 34, normalized size = 1.00 \begin {gather*} \frac {\log \left (\frac {1}{5} \left (e^{\frac {e^{\frac {25}{\log (3 x)}}}{x}+x}-5 x^2\right )\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.74, size = 33, normalized size = 0.97 \begin {gather*} \frac {\log \left (-x^{2} + \frac {1}{5} \, e^{\left (\frac {x^{2} + e^{\left (\frac {25}{\log \relax (3) + \log \relax (x)}\right )}}{x}\right )}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 34, normalized size = 1.00
method | result | size |
risch | \(\frac {\ln \left (\frac {{\mathrm e}^{\frac {{\mathrm e}^{\frac {25}{\ln \relax (x )+\ln \relax (3)}}+x^{2}}{x}}}{5}-x^{2}\right )}{\ln \relax (x )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.01, size = 35, normalized size = 1.03 \begin {gather*} -\frac {\log \relax (5) - \log \left (-5 \, x^{2} + e^{\left (x + \frac {e^{\left (\frac {25}{\log \relax (3) + \log \relax (x)}\right )}}{x}\right )}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {25}{\ln \left (3\,x\right )}}+x^2}{x}}\,\left ({\mathrm {e}}^{\frac {25}{\ln \left (3\,x\right )}}\,\left (\ln \relax (x)\,{\ln \left (3\,x\right )}^2+25\,\ln \relax (x)\right )-x^2\,{\ln \left (3\,x\right )}^2\,\ln \relax (x)\right )-\ln \left (\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {25}{\ln \left (3\,x\right )}}+x^2}{x}}}{5}-x^2\right )\,\left (5\,x^3\,{\ln \left (3\,x\right )}^2-x\,{\ln \left (3\,x\right )}^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {25}{\ln \left (3\,x\right )}}+x^2}{x}}\right )+10\,x^3\,{\ln \left (3\,x\right )}^2\,\ln \relax (x)}{5\,x^4\,{\ln \left (3\,x\right )}^2\,{\ln \relax (x)}^2-x^2\,{\ln \left (3\,x\right )}^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {25}{\ln \left (3\,x\right )}}+x^2}{x}}\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________