Optimal. Leaf size=27 \[ -e^x-\log (x)+3 \log \left (\frac {1}{x \left (-4+\frac {\log (x)}{2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2561, 6742, 2194, 2365, 43} \begin {gather*} -e^x-4 \log (x)-3 \log (8-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2194
Rule 2365
Rule 2561
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {29+8 e^x x+\left (-4-e^x x\right ) \log (x)}{x (-8+\log (x))} \, dx\\ &=\int \left (-e^x+\frac {29-4 \log (x)}{x (-8+\log (x))}\right ) \, dx\\ &=-\int e^x \, dx+\int \frac {29-4 \log (x)}{x (-8+\log (x))} \, dx\\ &=-e^x+\operatorname {Subst}\left (\int \frac {29-4 x}{-8+x} \, dx,x,\log (x)\right )\\ &=-e^x+\operatorname {Subst}\left (\int \left (-4-\frac {3}{-8+x}\right ) \, dx,x,\log (x)\right )\\ &=-e^x-4 \log (x)-3 \log (8-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 0.70 \begin {gather*} -e^x-4 \log (x)-3 \log (8-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 16, normalized size = 0.59 \begin {gather*} -e^{x} - 4 \, \log \relax (x) - 3 \, \log \left (\log \relax (x) - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 16, normalized size = 0.59 \begin {gather*} -e^{x} - 4 \, \log \relax (x) - 3 \, \log \left (\log \relax (x) - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.63
method | result | size |
default | \(-4 \ln \relax (x )-3 \ln \left (\ln \relax (x )-8\right )-{\mathrm e}^{x}\) | \(17\) |
norman | \(-4 \ln \relax (x )-3 \ln \left (\ln \relax (x )-8\right )-{\mathrm e}^{x}\) | \(17\) |
risch | \(-4 \ln \relax (x )-3 \ln \left (\ln \relax (x )-8\right )-{\mathrm e}^{x}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 16, normalized size = 0.59 \begin {gather*} -e^{x} - 4 \, \log \relax (x) - 3 \, \log \left (\log \relax (x) - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.03, size = 16, normalized size = 0.59 \begin {gather*} -3\,\ln \left (\ln \relax (x)-8\right )-{\mathrm {e}}^x-4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 17, normalized size = 0.63 \begin {gather*} - e^{x} - 4 \log {\relax (x )} - 3 \log {\left (\log {\relax (x )} - 8 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________