Optimal. Leaf size=26 \[ x-\frac {2 e^3}{3-5 e^{-3+\frac {1}{x}}-e^x+x} \]
________________________________________________________________________________________
Rubi [F] time = 3.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9 x^2+2 e^3 x^2+e^{2 x} x^2+e^{\frac {2 (1-3 x+x \log (5))}{x}} x^2+6 x^3+x^4+e^x \left (-6 x^2-2 e^3 x^2-2 x^3\right )+e^{\frac {1-3 x+x \log (5)}{x}} \left (2 e^3-6 x^2+2 e^x x^2-2 x^3\right )}{9 x^2+e^{2 x} x^2+e^{\frac {2 (1-3 x+x \log (5))}{x}} x^2+6 x^3+x^4+e^x \left (-6 x^2-2 x^3\right )+e^{\frac {1-3 x+x \log (5)}{x}} \left (-6 x^2+2 e^x x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} x^2+e^{\frac {2 (1-3 x+x \log (5))}{x}} x^2+\left (9+2 e^3\right ) x^2+6 x^3+x^4+e^x \left (-6 x^2-2 e^3 x^2-2 x^3\right )+e^{\frac {1-3 x+x \log (5)}{x}} \left (2 e^3-6 x^2+2 e^x x^2-2 x^3\right )}{9 x^2+e^{2 x} x^2+e^{\frac {2 (1-3 x+x \log (5))}{x}} x^2+6 x^3+x^4+e^x \left (-6 x^2-2 x^3\right )+e^{\frac {1-3 x+x \log (5)}{x}} \left (-6 x^2+2 e^x x^2-2 x^3\right )} \, dx\\ &=\int \frac {10 e^{6+\frac {1}{x}}+2 e^9 x^2+25 e^{2/x} x^2-2 e^{9+x} x^2+10 e^{3+\frac {1}{x}+x} x^2+e^{6+2 x} x^2-10 e^{3+\frac {1}{x}} x^2 (3+x)-2 e^{6+x} x^2 (3+x)+e^6 x^2 (3+x)^2}{x^2 \left (5 e^{\frac {1}{x}}+e^{3+x}-e^3 (3+x)\right )^2} \, dx\\ &=\int \left (1-\frac {2 e^6}{-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x}-\frac {2 e^6 \left (-5 e^{\frac {1}{x}}+2 e^3 x^2-5 e^{\frac {1}{x}} x^2+e^3 x^3\right )}{x^2 \left (3 e^3-5 e^{\frac {1}{x}}-e^{3+x}+e^3 x\right )^2}\right ) \, dx\\ &=x-\left (2 e^6\right ) \int \frac {1}{-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x} \, dx-\left (2 e^6\right ) \int \frac {-5 e^{\frac {1}{x}}+2 e^3 x^2-5 e^{\frac {1}{x}} x^2+e^3 x^3}{x^2 \left (3 e^3-5 e^{\frac {1}{x}}-e^{3+x}+e^3 x\right )^2} \, dx\\ &=x-\left (2 e^6\right ) \int \frac {1}{-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x} \, dx-\left (2 e^6\right ) \int \left (\frac {2 e^3}{\left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2}-\frac {5 e^{\frac {1}{x}}}{\left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2}-\frac {5 e^{\frac {1}{x}}}{x^2 \left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2}+\frac {e^3 x}{\left (3 e^3-5 e^{\frac {1}{x}}-e^{3+x}+e^3 x\right )^2}\right ) \, dx\\ &=x-\left (2 e^6\right ) \int \frac {1}{-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x} \, dx+\left (10 e^6\right ) \int \frac {e^{\frac {1}{x}}}{\left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2} \, dx+\left (10 e^6\right ) \int \frac {e^{\frac {1}{x}}}{x^2 \left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2} \, dx-\left (2 e^9\right ) \int \frac {x}{\left (3 e^3-5 e^{\frac {1}{x}}-e^{3+x}+e^3 x\right )^2} \, dx-\left (4 e^9\right ) \int \frac {1}{\left (-3 e^3+5 e^{\frac {1}{x}}+e^{3+x}-e^3 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 30, normalized size = 1.15 \begin {gather*} x+\frac {2 e^6}{5 e^{\frac {1}{x}}+e^{3+x}-e^3 (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 59, normalized size = 2.27 \begin {gather*} \frac {x^{2} - x e^{x} - x e^{\left (\frac {x \log \relax (5) - 3 \, x + 1}{x}\right )} + 3 \, x - 2 \, e^{3}}{x - e^{x} - e^{\left (\frac {x \log \relax (5) - 3 \, x + 1}{x}\right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4} + 6 \, x^{3} + 2 \, x^{2} e^{3} + x^{2} e^{\left (2 \, x\right )} + x^{2} e^{\left (\frac {2 \, {\left (x \log \relax (5) - 3 \, x + 1\right )}}{x}\right )} + 9 \, x^{2} - 2 \, {\left (x^{3} + x^{2} e^{3} + 3 \, x^{2}\right )} e^{x} - 2 \, {\left (x^{3} - x^{2} e^{x} + 3 \, x^{2} - e^{3}\right )} e^{\left (\frac {x \log \relax (5) - 3 \, x + 1}{x}\right )}}{x^{4} + 6 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + x^{2} e^{\left (\frac {2 \, {\left (x \log \relax (5) - 3 \, x + 1\right )}}{x}\right )} + 9 \, x^{2} - 2 \, {\left (x^{3} + 3 \, x^{2}\right )} e^{x} - 2 \, {\left (x^{3} - x^{2} e^{x} + 3 \, x^{2}\right )} e^{\left (\frac {x \log \relax (5) - 3 \, x + 1}{x}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 29, normalized size = 1.12
method | result | size |
risch | \(x -\frac {2 \,{\mathrm e}^{3}}{x -{\mathrm e}^{x}-5 \,{\mathrm e}^{-\frac {3 x -1}{x}}+3}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 54, normalized size = 2.08 \begin {gather*} \frac {x^{2} e^{3} + 3 \, x e^{3} - x e^{\left (x + 3\right )} - 5 \, x e^{\frac {1}{x}} - 2 \, e^{6}}{x e^{3} + 3 \, e^{3} - e^{\left (x + 3\right )} - 5 \, e^{\frac {1}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.10, size = 23, normalized size = 0.88 \begin {gather*} x-\frac {2\,{\mathrm {e}}^3}{x-{\mathrm {e}}^x-5\,{\mathrm {e}}^{1/x}\,{\mathrm {e}}^{-3}+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 1.00 \begin {gather*} x + \frac {2 e^{3}}{- x + e^{x} + e^{\frac {- 3 x + x \log {\relax (5 )} + 1}{x}} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________