Optimal. Leaf size=22 \[ 4 \left (36 x^2 (-x+x \log (4))^2+\log (5)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.32, number of steps used = 9, number of rules used = 3, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6, 12, 30} \begin {gather*} 5184 x^8 (1-\log (4))^4+288 x^4 (1-\log (4))^2 \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 30
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (x^7 (41472-165888 \log (4))+248832 x^7 \log ^2(4)-165888 x^7 \log ^3(4)+41472 x^7 \log ^4(4)+\left (1152 x^3-2304 x^3 \log (4)+1152 x^3 \log ^2(4)\right ) \log (5)\right ) \, dx\\ &=\int \left (-165888 x^7 \log ^3(4)+41472 x^7 \log ^4(4)+x^7 \left (41472-165888 \log (4)+248832 \log ^2(4)\right )+\left (1152 x^3-2304 x^3 \log (4)+1152 x^3 \log ^2(4)\right ) \log (5)\right ) \, dx\\ &=\int \left (x^7 \left (41472-165888 \log (4)+248832 \log ^2(4)\right )+x^7 \left (-165888 \log ^3(4)+41472 \log ^4(4)\right )+\left (1152 x^3-2304 x^3 \log (4)+1152 x^3 \log ^2(4)\right ) \log (5)\right ) \, dx\\ &=\int \left (x^7 \left (41472-165888 \log (4)+248832 \log ^2(4)-165888 \log ^3(4)+41472 \log ^4(4)\right )+\left (1152 x^3-2304 x^3 \log (4)+1152 x^3 \log ^2(4)\right ) \log (5)\right ) \, dx\\ &=5184 x^8 (1-\log (4))^4+\log (5) \int \left (1152 x^3-2304 x^3 \log (4)+1152 x^3 \log ^2(4)\right ) \, dx\\ &=5184 x^8 (1-\log (4))^4+\log (5) \int \left (x^3 (1152-2304 \log (4))+1152 x^3 \log ^2(4)\right ) \, dx\\ &=5184 x^8 (1-\log (4))^4+\log (5) \int x^3 \left (1152-2304 \log (4)+1152 \log ^2(4)\right ) \, dx\\ &=5184 x^8 (1-\log (4))^4+\left (1152 (1-\log (4))^2 \log (5)\right ) \int x^3 \, dx\\ &=5184 x^8 (1-\log (4))^4+288 x^4 (1-\log (4))^2 \log (5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 31, normalized size = 1.41 \begin {gather*} 1152 (-1+\log (4))^2 \left (\frac {9}{2} x^8 (-1+\log (4))^2+\frac {1}{4} x^4 \log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.37, size = 64, normalized size = 2.91 \begin {gather*} 82944 \, x^{8} \log \relax (2)^{4} - 165888 \, x^{8} \log \relax (2)^{3} + 124416 \, x^{8} \log \relax (2)^{2} - 41472 \, x^{8} \log \relax (2) + 5184 \, x^{8} + 288 \, {\left (4 \, x^{4} \log \relax (2)^{2} - 4 \, x^{4} \log \relax (2) + x^{4}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 64, normalized size = 2.91 \begin {gather*} 82944 \, x^{8} \log \relax (2)^{4} - 165888 \, x^{8} \log \relax (2)^{3} + 124416 \, x^{8} \log \relax (2)^{2} - 41472 \, x^{8} \log \relax (2) + 5184 \, x^{8} + 288 \, {\left (4 \, x^{4} \log \relax (2)^{2} - 4 \, x^{4} \log \relax (2) + x^{4}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 42, normalized size = 1.91
method | result | size |
gosper | \(288 \left (4 \ln \relax (2)^{2}-4 \ln \relax (2)+1\right ) \left (72 x^{4} \ln \relax (2)^{2}-72 x^{4} \ln \relax (2)+18 x^{4}+\ln \relax (5)\right ) x^{4}\) | \(42\) |
norman | \(\left (1152 \ln \relax (2)^{2} \ln \relax (5)-1152 \ln \relax (2) \ln \relax (5)+288 \ln \relax (5)\right ) x^{4}+\left (82944 \ln \relax (2)^{4}-165888 \ln \relax (2)^{3}+124416 \ln \relax (2)^{2}-41472 \ln \relax (2)+5184\right ) x^{8}\) | \(53\) |
default | \(\ln \relax (5) \left (1152 x^{4} \ln \relax (2)^{2}-1152 x^{4} \ln \relax (2)+288 x^{4}\right )+82944 x^{8} \ln \relax (2)^{4}-165888 x^{8} \ln \relax (2)^{3}+124416 x^{8} \ln \relax (2)^{2}-41472 x^{8} \ln \relax (2)+5184 x^{8}\) | \(66\) |
risch | \(82944 x^{8} \ln \relax (2)^{4}-165888 x^{8} \ln \relax (2)^{3}+124416 x^{8} \ln \relax (2)^{2}-41472 x^{8} \ln \relax (2)+5184 x^{8}+1152 x^{4} \ln \relax (5) \ln \relax (2)^{2}-1152 x^{4} \ln \relax (5) \ln \relax (2)+288 x^{4} \ln \relax (5)\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 64, normalized size = 2.91 \begin {gather*} 82944 \, x^{8} \log \relax (2)^{4} - 165888 \, x^{8} \log \relax (2)^{3} + 124416 \, x^{8} \log \relax (2)^{2} - 41472 \, x^{8} \log \relax (2) + 5184 \, x^{8} + 288 \, {\left (4 \, x^{4} \log \relax (2)^{2} - 4 \, x^{4} \log \relax (2) + x^{4}\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 37, normalized size = 1.68 \begin {gather*} 288\,x^4\,{\left (2\,\ln \relax (2)-1\right )}^2\,\left (\ln \relax (5)+72\,x^4\,{\ln \relax (2)}^2-72\,x^4\,\ln \relax (2)+18\,x^4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 56, normalized size = 2.55 \begin {gather*} x^{8} \left (- 165888 \log {\relax (2 )}^{3} - 41472 \log {\relax (2 )} + 5184 + 82944 \log {\relax (2 )}^{4} + 124416 \log {\relax (2 )}^{2}\right ) + x^{4} \left (- 1152 \log {\relax (2 )} \log {\relax (5 )} + 288 \log {\relax (5 )} + 1152 \log {\relax (2 )}^{2} \log {\relax (5 )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________