Optimal. Leaf size=27 \[ x \left (2+x^2+\frac {5 (5+x)}{\log \left (4+e^x-x+\log ^2(5)\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25 x+5 x^2+e^x \left (-25 x-5 x^2\right )+\left (100+15 x-10 x^2+e^x (25+10 x)+(25+10 x) \log ^2(5)\right ) \log \left (4+e^x-x+\log ^2(5)\right )+\left (8-2 x+12 x^2-3 x^3+e^x \left (2+3 x^2\right )+\left (2+3 x^2\right ) \log ^2(5)\right ) \log ^2\left (4+e^x-x+\log ^2(5)\right )}{\left (4+e^x-x+\log ^2(5)\right ) \log ^2\left (4+e^x-x+\log ^2(5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 x+5 x^2+e^x \left (-25 x-5 x^2\right )+\left (100+15 x-10 x^2+e^x (25+10 x)+(25+10 x) \log ^2(5)\right ) \log \left (4+e^x-x+\log ^2(5)\right )+\left (8-2 x+12 x^2-3 x^3+e^x \left (2+3 x^2\right )+\left (2+3 x^2\right ) \log ^2(5)\right ) \log ^2\left (4+e^x-x+\log ^2(5)\right )}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ &=\int \frac {25 x+5 x^2-5 e^x x (5+x)+5 (5+2 x) \left (4+e^x-x+\log ^2(5)\right ) \log \left (4+e^x-x+\log ^2(5)\right )+\left (2+3 x^2\right ) \left (4+e^x-x+\log ^2(5)\right ) \log ^2\left (4+e^x-x+\log ^2(5)\right )}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ &=\int \left (\frac {5 x (5+x) \left (5-x+\log ^2(5)\right )}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {-25 x-5 x^2+25 \log \left (4+e^x-x+\log ^2(5)\right )+10 x \log \left (4+e^x-x+\log ^2(5)\right )+2 \log ^2\left (4+e^x-x+\log ^2(5)\right )+3 x^2 \log ^2\left (4+e^x-x+\log ^2(5)\right )}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}\right ) \, dx\\ &=5 \int \frac {x (5+x) \left (5-x+\log ^2(5)\right )}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\int \frac {-25 x-5 x^2+25 \log \left (4+e^x-x+\log ^2(5)\right )+10 x \log \left (4+e^x-x+\log ^2(5)\right )+2 \log ^2\left (4+e^x-x+\log ^2(5)\right )+3 x^2 \log ^2\left (4+e^x-x+\log ^2(5)\right )}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ &=5 \int \left (\frac {x^3}{\left (-e^x+x-4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {x^2 \log ^2(5)}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {5 x \left (5+\log ^2(5)\right )}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}\right ) \, dx+\int \left (2+3 x^2-\frac {5 x (5+x)}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {5 (5+2 x)}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}\right ) \, dx\\ &=2 x+x^3-5 \int \frac {x (5+x)}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+5 \int \frac {x^3}{\left (-e^x+x-4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+5 \int \frac {5+2 x}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (5 \log ^2(5)\right ) \int \frac {x^2}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (25 \left (5+\log ^2(5)\right )\right ) \int \frac {x}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ &=2 x+x^3-5 \int \left (\frac {5 x}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {x^2}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}\right ) \, dx+5 \int \left (\frac {5}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}+\frac {2 x}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )}\right ) \, dx+5 \int \frac {x^3}{\left (-e^x+x-4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (5 \log ^2(5)\right ) \int \frac {x^2}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (25 \left (5+\log ^2(5)\right )\right ) \int \frac {x}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ &=2 x+x^3-5 \int \frac {x^2}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+5 \int \frac {x^3}{\left (-e^x+x-4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+10 \int \frac {x}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx-25 \int \frac {x}{\log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+25 \int \frac {1}{\log \left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (5 \log ^2(5)\right ) \int \frac {x^2}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx+\left (25 \left (5+\log ^2(5)\right )\right ) \int \frac {x}{\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right ) \log ^2\left (e^x-x+4 \left (1+\frac {\log ^2(5)}{4}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 28, normalized size = 1.04 \begin {gather*} 2 x+x^3+\frac {5 x (5+x)}{\log \left (4+e^x-x+\log ^2(5)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 44, normalized size = 1.63 \begin {gather*} \frac {5 \, x^{2} + {\left (x^{3} + 2 \, x\right )} \log \left (\log \relax (5)^{2} - x + e^{x} + 4\right ) + 25 \, x}{\log \left (\log \relax (5)^{2} - x + e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.02, size = 55, normalized size = 2.04 \begin {gather*} \frac {x^{3} \log \left (\log \relax (5)^{2} - x + e^{x} + 4\right ) + 5 \, x^{2} + 2 \, x \log \left (\log \relax (5)^{2} - x + e^{x} + 4\right ) + 25 \, x}{\log \left (\log \relax (5)^{2} - x + e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 1.04
method | result | size |
risch | \(x^{3}+2 x +\frac {5 \left (5+x \right ) x}{\ln \left ({\mathrm e}^{x}+\ln \relax (5)^{2}-x +4\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 44, normalized size = 1.63 \begin {gather*} \frac {5 \, x^{2} + {\left (x^{3} + 2 \, x\right )} \log \left (\log \relax (5)^{2} - x + e^{x} + 4\right ) + 25 \, x}{\log \left (\log \relax (5)^{2} - x + e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 95, normalized size = 3.52 \begin {gather*} 12\,x+\frac {25\,x+10\,x\,{\ln \relax (5)}^2+25\,{\ln \relax (5)}^2-10\,x^2+125}{{\mathrm {e}}^x-1}+\frac {5\,x\,\left (x+5\right )-\frac {5\,\ln \left ({\mathrm {e}}^x-x+{\ln \relax (5)}^2+4\right )\,\left (2\,x+5\right )\,\left ({\mathrm {e}}^x-x+{\ln \relax (5)}^2+4\right )}{{\mathrm {e}}^x-1}}{\ln \left ({\mathrm {e}}^x-x+{\ln \relax (5)}^2+4\right )}+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 27, normalized size = 1.00 \begin {gather*} x^{3} + 2 x + \frac {5 x^{2} + 25 x}{\log {\left (- x + e^{x} + \log {\relax (5 )}^{2} + 4 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________