Optimal. Leaf size=27 \[ x-x^2+e^{-\left ((3-x) x^2\right )} (1-x \log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-3 x^2+x^3} \left (-1+e^{3 x^2-x^3} (1-2 x)-6 x+3 x^2+\left (-1+6 x^2-3 x^3\right ) \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-e^{-3 x^2+x^3}-2 x-6 e^{-3 x^2+x^3} x+3 e^{-3 x^2+x^3} x^2-e^{-3 x^2+x^3} \left (1-6 x^2+3 x^3\right ) \log (x)\right ) \, dx\\ &=x-x^2+3 \int e^{-3 x^2+x^3} x^2 \, dx-6 \int e^{-3 x^2+x^3} x \, dx-\int e^{-3 x^2+x^3} \, dx-\int e^{-3 x^2+x^3} \left (1-6 x^2+3 x^3\right ) \log (x) \, dx\\ &=x-x^2-\frac {e^{-3 x^2+x^3} \left (2 x^2-x^3\right ) \log (x)}{2 x-x^2}+3 \int e^{-3 x^2+x^3} x^2 \, dx-6 \int e^{-3 x^2+x^3} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.38, size = 30, normalized size = 1.11 \begin {gather*} e^{(-3+x) x^2}+x-x^2-e^{(-3+x) x^2} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 32, normalized size = 1.19 \begin {gather*} -x e^{\left (x^{3} - 3 \, x^{2}\right )} \log \relax (x) - x^{2} + x + e^{\left (x^{3} - 3 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 32, normalized size = 1.19 \begin {gather*} -x e^{\left (x^{3} - 3 \, x^{2}\right )} \log \relax (x) - x^{2} + x + e^{\left (x^{3} - 3 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.11
method | result | size |
default | \(x +\left (-x \ln \relax (x )+1\right ) {\mathrm e}^{x^{3}-3 x^{2}}-x^{2}\) | \(30\) |
risch | \(-x \,{\mathrm e}^{x^{2} \left (x -3\right )} \ln \relax (x )-\left (x^{2} {\mathrm e}^{-x^{2} \left (x -3\right )}-x \,{\mathrm e}^{-x^{2} \left (x -3\right )}-1\right ) {\mathrm e}^{x^{2} \left (x -3\right )}\) | \(52\) |
norman | \(\left (1+x \,{\mathrm e}^{-x^{3}+3 x^{2}}-x \ln \relax (x )-x^{2} {\mathrm e}^{-x^{3}+3 x^{2}}\right ) {\mathrm e}^{x^{3}-3 x^{2}}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 25, normalized size = 0.93 \begin {gather*} -x^{2} - {\left (x \log \relax (x) - 1\right )} e^{\left (x^{3} - 3 \, x^{2}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 32, normalized size = 1.19 \begin {gather*} x+{\mathrm {e}}^{x^3-3\,x^2}-x^2-x\,{\mathrm {e}}^{x^3-3\,x^2}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.74 \begin {gather*} - x^{2} + x + \left (- x \log {\relax (x )} + 1\right ) e^{x^{3} - 3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________