Optimal. Leaf size=28 \[ -x+\log \left (3+\frac {\frac {1}{x}+x-\frac {x}{-4-\frac {x}{3}}}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {2074, 1587} \begin {gather*} \log \left (4 x^3+51 x^2+x+12\right )-x-2 \log (x)-\log (x+12) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {1}{-12-x}-\frac {2}{x}+\frac {1+102 x+12 x^2}{12+x+51 x^2+4 x^3}\right ) \, dx\\ &=-x-2 \log (x)-\log (12+x)+\int \frac {1+102 x+12 x^2}{12+x+51 x^2+4 x^3} \, dx\\ &=-x-2 \log (x)-\log (12+x)+\log \left (12+x+51 x^2+4 x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.00 \begin {gather*} -x-2 \log (x)-\log (12+x)+\log \left (12+x+51 x^2+4 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 28, normalized size = 1.00 \begin {gather*} -x + \log \left (4 \, x^{3} + 51 \, x^{2} + x + 12\right ) - \log \left (x + 12\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 31, normalized size = 1.11 \begin {gather*} -x + \log \left ({\left | 4 \, x^{3} + 51 \, x^{2} + x + 12 \right |}\right ) - \log \left ({\left | x + 12 \right |}\right ) - 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.04
method | result | size |
default | \(-x -\ln \left (x +12\right )-2 \ln \relax (x )+\ln \left (4 x^{3}+51 x^{2}+x +12\right )\) | \(29\) |
norman | \(-x -\ln \left (x +12\right )-2 \ln \relax (x )+\ln \left (4 x^{3}+51 x^{2}+x +12\right )\) | \(29\) |
risch | \(-x -\ln \left (x +12\right )-2 \ln \relax (x )+\ln \left (4 x^{3}+51 x^{2}+x +12\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 28, normalized size = 1.00 \begin {gather*} -x + \log \left (4 \, x^{3} + 51 \, x^{2} + x + 12\right ) - \log \left (x + 12\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 28, normalized size = 1.00 \begin {gather*} \ln \left (4\,x^3+51\,x^2+x+12\right )-\ln \left (x+12\right )-x-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 0.93 \begin {gather*} - x - 2 \log {\relax (x )} - \log {\left (x + 12 \right )} + \log {\left (4 x^{3} + 51 x^{2} + x + 12 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________