Optimal. Leaf size=29 \[ \frac {1}{3} \left (4+\frac {\log (4+x)}{48 x^2}-\log \left (\frac {\log (2 x)}{\log (5)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.59, antiderivative size = 21, normalized size of antiderivative = 0.72, number of steps used = 15, number of rules used = 8, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1593, 6688, 12, 14, 44, 2302, 29, 2395} \begin {gather*} \frac {\log (x+4)}{144 x^2}-\frac {1}{3} \log (\log (2 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 44
Rule 1593
Rule 2302
Rule 2395
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-192 x^2-48 x^3+\log (2 x) (x+(-8-2 x) \log (4+x))}{x^3 (576+144 x) \log (2 x)} \, dx\\ &=\int \frac {\frac {x}{4+x}-\frac {48 x^2}{\log (2 x)}-2 \log (4+x)}{144 x^3} \, dx\\ &=\frac {1}{144} \int \frac {\frac {x}{4+x}-\frac {48 x^2}{\log (2 x)}-2 \log (4+x)}{x^3} \, dx\\ &=\frac {1}{144} \int \left (\frac {-192 x-48 x^2+\log (2 x)}{x^2 (4+x) \log (2 x)}-\frac {2 \log (4+x)}{x^3}\right ) \, dx\\ &=\frac {1}{144} \int \frac {-192 x-48 x^2+\log (2 x)}{x^2 (4+x) \log (2 x)} \, dx-\frac {1}{72} \int \frac {\log (4+x)}{x^3} \, dx\\ &=\frac {\log (4+x)}{144 x^2}-\frac {1}{144} \int \frac {1}{x^2 (4+x)} \, dx+\frac {1}{144} \int \frac {\frac {1}{4+x}-\frac {48 x}{\log (2 x)}}{x^2} \, dx\\ &=\frac {\log (4+x)}{144 x^2}-\frac {1}{144} \int \left (\frac {1}{4 x^2}-\frac {1}{16 x}+\frac {1}{16 (4+x)}\right ) \, dx+\frac {1}{144} \int \left (\frac {1}{x^2 (4+x)}-\frac {48}{x \log (2 x)}\right ) \, dx\\ &=\frac {1}{576 x}+\frac {\log (x)}{2304}-\frac {\log (4+x)}{2304}+\frac {\log (4+x)}{144 x^2}+\frac {1}{144} \int \frac {1}{x^2 (4+x)} \, dx-\frac {1}{3} \int \frac {1}{x \log (2 x)} \, dx\\ &=\frac {1}{576 x}+\frac {\log (x)}{2304}-\frac {\log (4+x)}{2304}+\frac {\log (4+x)}{144 x^2}+\frac {1}{144} \int \left (\frac {1}{4 x^2}-\frac {1}{16 x}+\frac {1}{16 (4+x)}\right ) \, dx-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (2 x)\right )\\ &=\frac {\log (4+x)}{144 x^2}-\frac {1}{3} \log (\log (2 x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.69 \begin {gather*} \frac {1}{144} \left (\frac {\log (4+x)}{x^2}-48 \log (\log (2 x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 22, normalized size = 0.76 \begin {gather*} -\frac {48 \, x^{2} \log \left (\log \left (2 \, x\right )\right ) - \log \left (x + 4\right )}{144 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.67, size = 17, normalized size = 0.59 \begin {gather*} \frac {\log \left (x + 4\right )}{144 \, x^{2}} - \frac {1}{3} \, \log \left (\log \left (2 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 18, normalized size = 0.62
method | result | size |
risch | \(\frac {\ln \left (4+x \right )}{144 x^{2}}-\frac {\ln \left (\ln \left (2 x \right )\right )}{3}\) | \(18\) |
default | \(\frac {-\frac {1}{4}-\frac {x \ln \relax (x )}{16}}{144 x}+\frac {\ln \left (4+x \right )}{2304}-\frac {\ln \left (\ln \relax (2)+\ln \relax (x )\right )}{3}+\frac {1}{576 x}+\frac {\ln \relax (x )}{2304}-\frac {\ln \left (4+x \right ) \left (4+x \right ) \left (x -4\right )}{2304 x^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 18, normalized size = 0.62 \begin {gather*} \frac {\log \left (x + 4\right )}{144 \, x^{2}} - \frac {1}{3} \, \log \left (\log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.20, size = 17, normalized size = 0.59 \begin {gather*} \frac {\ln \left (x+4\right )}{144\,x^2}-\frac {\ln \left (\ln \left (2\,x\right )\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 17, normalized size = 0.59 \begin {gather*} - \frac {\log {\left (\log {\left (2 x \right )} \right )}}{3} + \frac {\log {\left (x + 4 \right )}}{144 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________