Optimal. Leaf size=30 \[ \frac {e^x+e^{5 x}-(5-x) \left (-2+e^x+x-\log (4)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 6, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {14, 2199, 2194, 2177, 2178, 2197} \begin {gather*} x+e^x-\frac {4 e^x}{x}+\frac {e^{5 x}}{x}+\frac {5 (2+\log (4))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x (-2+x)^2}{x^2}+\frac {e^{5 x} (-1+5 x)}{x^2}+\frac {-10+x^2-5 \log (4)}{x^2}\right ) \, dx\\ &=\int \frac {e^x (-2+x)^2}{x^2} \, dx+\int \frac {e^{5 x} (-1+5 x)}{x^2} \, dx+\int \frac {-10+x^2-5 \log (4)}{x^2} \, dx\\ &=\frac {e^{5 x}}{x}+\int \left (e^x+\frac {4 e^x}{x^2}-\frac {4 e^x}{x}\right ) \, dx+\int \left (1-\frac {5 (2+\log (4))}{x^2}\right ) \, dx\\ &=\frac {e^{5 x}}{x}+x+\frac {5 (2+\log (4))}{x}+4 \int \frac {e^x}{x^2} \, dx-4 \int \frac {e^x}{x} \, dx+\int e^x \, dx\\ &=e^x-\frac {4 e^x}{x}+\frac {e^{5 x}}{x}+x-4 \text {Ei}(x)+\frac {5 (2+\log (4))}{x}+4 \int \frac {e^x}{x} \, dx\\ &=e^x-\frac {4 e^x}{x}+\frac {e^{5 x}}{x}+x+\frac {5 (2+\log (4))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 0.87 \begin {gather*} \frac {e^{5 x}+e^x (-4+x)+x^2+5 (2+\log (4))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.22, size = 23, normalized size = 0.77 \begin {gather*} \frac {x^{2} + {\left (x - 4\right )} e^{x} + e^{\left (5 \, x\right )} + 10 \, \log \relax (2) + 10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 25, normalized size = 0.83 \begin {gather*} \frac {x^{2} + x e^{x} + e^{\left (5 \, x\right )} - 4 \, e^{x} + 10 \, \log \relax (2) + 10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 0.87
method | result | size |
norman | \(\frac {x^{2}+{\mathrm e}^{5 x}+{\mathrm e}^{x} x -4 \,{\mathrm e}^{x}+10 \ln \relax (2)+10}{x}\) | \(26\) |
default | \(x +\frac {10}{x}+\frac {{\mathrm e}^{5 x}}{x}-\frac {4 \,{\mathrm e}^{x}}{x}+\frac {10 \ln \relax (2)}{x}+{\mathrm e}^{x}\) | \(32\) |
risch | \(x +\frac {10 \ln \relax (2)}{x}+\frac {10}{x}+\frac {{\mathrm e}^{5 x}}{x}+\frac {\left (x -4\right ) {\mathrm e}^{x}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.61, size = 40, normalized size = 1.33 \begin {gather*} x + \frac {10 \, \log \relax (2)}{x} + \frac {10}{x} + 5 \, {\rm Ei}\left (5 \, x\right ) - 4 \, {\rm Ei}\relax (x) + e^{x} + 4 \, \Gamma \left (-1, -x\right ) - 5 \, \Gamma \left (-1, -5 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 22, normalized size = 0.73 \begin {gather*} x+{\mathrm {e}}^x+\frac {{\mathrm {e}}^{5\,x}+10\,\ln \relax (2)-4\,{\mathrm {e}}^x+10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 29, normalized size = 0.97 \begin {gather*} x + \frac {10 \log {\relax (2 )} + 10}{x} + \frac {x e^{5 x} + \left (x^{2} - 4 x\right ) e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________