Optimal. Leaf size=24 \[ 16 x \left (4+e^x+x\right ) \left (-4+e^{-2 x} x^2+\log (3)\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 145.71, antiderivative size = 1259, normalized size of antiderivative = 52.46, number of steps used = 158, number of rules used = 6, integrand size = 462, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6688, 12, 6742, 2196, 2176, 2194} \begin {gather*} 16 e^{-8 x} x^{10}+64 e^{-8 x} x^9+16 e^{-7 x} x^9-64 e^{-6 x} (4-\log (3)) x^8-\frac {8}{3} e^{-6 x} (256-66 \log (3)+\log (9)) x^7-\frac {256}{3} e^{-6 x} (4-\log (3)) x^7-64 e^{-5 x} (4-\log (3)) x^7+\frac {8}{3} e^{-6 x} (448-108 \log (3)-\log (81)) x^6-\frac {28}{9} e^{-6 x} (256-66 \log (3)+\log (9)) x^6+96 e^{-4 x} (4-\log (3))^2 x^6-\frac {896}{9} e^{-6 x} (4-\log (3)) x^6+\frac {8}{3} e^{-6 x} (448-108 \log (3)-\log (81)) x^5+12 e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9)) x^5-\frac {28}{9} e^{-6 x} (256-66 \log (3)+\log (9)) x^5+144 e^{-4 x} (4-\log (3))^2 x^5+96 e^{-3 x} (4-\log (3))^2 x^5-\frac {896}{9} e^{-6 x} (4-\log (3)) x^5-12 e^{-4 x} (4-\log (3)) (160-36 \log (3)-\log (81)) x^4+\frac {20}{9} e^{-6 x} (448-108 \log (3)-\log (81)) x^4+15 e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9)) x^4-\frac {70}{27} e^{-6 x} (256-66 \log (3)+\log (9)) x^4-64 e^{-2 x} (4-\log (3))^3 x^4+180 e^{-4 x} (4-\log (3))^2 x^4-\frac {2240}{27} e^{-6 x} (4-\log (3)) x^4-8 e^{-2 x} (4-\log (3))^2 (64-\log (43046721)) x^3-12 e^{-4 x} (4-\log (3)) (160-36 \log (3)-\log (81)) x^3+\frac {40}{27} e^{-6 x} (448-108 \log (3)-\log (81)) x^3+15 e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9)) x^3-\frac {140}{81} e^{-6 x} (256-66 \log (3)+\log (9)) x^3-128 e^{-2 x} (4-\log (3))^3 x^3-64 e^{-x} (4-\log (3))^3 x^3+180 e^{-4 x} (4-\log (3))^2 x^3-\frac {4480}{81} e^{-6 x} (4-\log (3)) x^3-12 e^{-2 x} (4-\log (3))^2 (64-\log (43046721)) x^2+24 e^{-2 x} (4-\log (3))^2 (64-12 \log (3)-\log (81)) x^2-9 e^{-4 x} (4-\log (3)) (160-36 \log (3)-\log (81)) x^2+\frac {20}{27} e^{-6 x} (448-108 \log (3)-\log (81)) x^2+\frac {45}{4} e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9)) x^2-\frac {70}{81} e^{-6 x} (256-66 \log (3)+\log (9)) x^2-192 e^{-2 x} (4-\log (3))^3 x^2+135 e^{-4 x} (4-\log (3))^2 x^2-\frac {2240}{81} e^{-6 x} (4-\log (3)) x^2-12 e^{-2 x} (4-\log (3))^2 (64-\log (43046721)) x+24 e^{-2 x} (4-\log (3))^2 (64-12 \log (3)-\log (81)) x-\frac {9}{2} e^{-4 x} (4-\log (3)) (160-36 \log (3)-\log (81)) x+\frac {20}{81} e^{-6 x} (448-108 \log (3)-\log (81)) x+\frac {45}{8} e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9)) x-\frac {70}{243} e^{-6 x} (256-66 \log (3)+\log (9)) x-192 e^{-2 x} (4-\log (3))^3 x+\frac {135}{2} e^{-4 x} (4-\log (3))^2 x-\frac {2240}{243} e^{-6 x} (4-\log (3)) x+\frac {8 (4-\log (3))^3 (-\log (9) x+8 x-\log (81)+16)^2}{8-\log (9)}-6 e^{-2 x} (4-\log (3))^2 (64-\log (43046721))+12 e^{-2 x} (4-\log (3))^2 (64-12 \log (3)-\log (81))-\frac {9}{8} e^{-4 x} (4-\log (3)) (160-36 \log (3)-\log (81))+\frac {10}{243} e^{-6 x} (448-108 \log (3)-\log (81))+\frac {45}{32} e^{-4 x} (4-\log (3)) (80-22 \log (3)+\log (9))-\frac {35}{729} e^{-6 x} (256-66 \log (3)+\log (9))-16 e^x (4-\log (3))^4+16 e^x (x+1) (4-\log (3))^4-96 e^{-2 x} (4-\log (3))^3+\frac {135}{8} e^{-4 x} (4-\log (3))^2-\frac {1120}{729} e^{-6 x} (4-\log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 16 e^{-8 x} \left (x^2+e^{2 x} (-4+\log (3))\right )^3 \left (-e^x x^2 (-9+7 x)-2 x^2 \left (-18+11 x+4 x^2\right )+e^{3 x} (1+x) (-4+\log (3))+e^{2 x} (-16+x (-8+\log (9))+\log (81))\right ) \, dx\\ &=16 \int e^{-8 x} \left (x^2+e^{2 x} (-4+\log (3))\right )^3 \left (-e^x x^2 (-9+7 x)-2 x^2 \left (-18+11 x+4 x^2\right )+e^{3 x} (1+x) (-4+\log (3))+e^{2 x} (-16+x (-8+\log (9))+\log (81))\right ) \, dx\\ &=16 \int \left (-e^{-7 x} x^8 (-9+7 x)-2 e^{-8 x} x^8 \left (-18+11 x+4 x^2\right )-4 e^{-5 x} x^6 (-7+5 x) (-4+\log (3))-6 e^{-3 x} x^4 (-5+3 x) (-4+\log (3))^2-4 e^{-x} (-3+x) x^2 (-4+\log (3))^3+e^x (1+x) (-4+\log (3))^4+3 e^{-4 x} x^4 (4-\log (3)) \left (160-8 x^2 (4-\log (3))-36 \log (3)-x (80-22 \log (3)+\log (9))-\log (81)\right )+(-4+\log (3))^3 (-16-8 x+x \log (9)+\log (81))+e^{-6 x} x^6 \left (-448+24 x^2 (4-\log (3))+108 \log (3)+x (256-66 \log (3)+\log (9))+\log (81)\right )+e^{-2 x} x^2 (4-\log (3))^2 \left (8 x^2 (4-\log (3))-3 (64-12 \log (3)-\log (81))+x (64-\log (43046721))\right )\right ) \, dx\\ &=\frac {8 (4-\log (3))^3 (16+8 x-x \log (9)-\log (81))^2}{8-\log (9)}-16 \int e^{-7 x} x^8 (-9+7 x) \, dx+16 \int e^{-6 x} x^6 \left (-448+24 x^2 (4-\log (3))+108 \log (3)+x (256-66 \log (3)+\log (9))+\log (81)\right ) \, dx-32 \int e^{-8 x} x^8 \left (-18+11 x+4 x^2\right ) \, dx+(48 (4-\log (3))) \int e^{-4 x} x^4 \left (160-8 x^2 (4-\log (3))-36 \log (3)-x (80-22 \log (3)+\log (9))-\log (81)\right ) \, dx+(64 (4-\log (3))) \int e^{-5 x} x^6 (-7+5 x) \, dx+\left (16 (4-\log (3))^2\right ) \int e^{-2 x} x^2 \left (8 x^2 (4-\log (3))-3 (64-12 \log (3)-\log (81))+x (64-\log (43046721))\right ) \, dx-\left (96 (4-\log (3))^2\right ) \int e^{-3 x} x^4 (-5+3 x) \, dx+\left (64 (4-\log (3))^3\right ) \int e^{-x} (-3+x) x^2 \, dx+\left (16 (4-\log (3))^4\right ) \int e^x (1+x) \, dx\\ &=16 e^x (1+x) (4-\log (3))^4+\frac {8 (4-\log (3))^3 (16+8 x-x \log (9)-\log (81))^2}{8-\log (9)}-16 \int \left (-9 e^{-7 x} x^8+7 e^{-7 x} x^9\right ) \, dx+16 \int \left (-24 e^{-6 x} x^8 (-4+\log (3))-e^{-6 x} x^7 (-256+66 \log (3)-\log (9))+e^{-6 x} x^6 (-448+108 \log (3)+\log (81))\right ) \, dx-32 \int \left (-18 e^{-8 x} x^8+11 e^{-8 x} x^9+4 e^{-8 x} x^{10}\right ) \, dx+(48 (4-\log (3))) \int \left (8 e^{-4 x} x^6 (-4+\log (3))+e^{-4 x} x^5 (-80+22 \log (3)-\log (9))-e^{-4 x} x^4 (-160+36 \log (3)+\log (81))\right ) \, dx+(64 (4-\log (3))) \int \left (-7 e^{-5 x} x^6+5 e^{-5 x} x^7\right ) \, dx+\left (16 (4-\log (3))^2\right ) \int \left (-8 e^{-2 x} x^4 (-4+\log (3))+3 e^{-2 x} x^2 (-64+12 \log (3)+\log (81))-e^{-2 x} x^3 (-64+\log (43046721))\right ) \, dx-\left (96 (4-\log (3))^2\right ) \int \left (-5 e^{-3 x} x^4+3 e^{-3 x} x^5\right ) \, dx+\left (64 (4-\log (3))^3\right ) \int \left (-3 e^{-x} x^2+e^{-x} x^3\right ) \, dx-\left (16 (4-\log (3))^4\right ) \int e^x \, dx\\ &=-16 e^x (4-\log (3))^4+16 e^x (1+x) (4-\log (3))^4+\frac {8 (4-\log (3))^3 (16+8 x-x \log (9)-\log (81))^2}{8-\log (9)}-112 \int e^{-7 x} x^9 \, dx-128 \int e^{-8 x} x^{10} \, dx+144 \int e^{-7 x} x^8 \, dx-352 \int e^{-8 x} x^9 \, dx+576 \int e^{-8 x} x^8 \, dx+(320 (4-\log (3))) \int e^{-5 x} x^7 \, dx+(384 (4-\log (3))) \int e^{-6 x} x^8 \, dx-(448 (4-\log (3))) \int e^{-5 x} x^6 \, dx-\left (288 (4-\log (3))^2\right ) \int e^{-3 x} x^5 \, dx-\left (384 (4-\log (3))^2\right ) \int e^{-4 x} x^6 \, dx+\left (480 (4-\log (3))^2\right ) \int e^{-3 x} x^4 \, dx+\left (64 (4-\log (3))^3\right ) \int e^{-x} x^3 \, dx+\left (128 (4-\log (3))^3\right ) \int e^{-2 x} x^4 \, dx-\left (192 (4-\log (3))^3\right ) \int e^{-x} x^2 \, dx+(16 (256-66 \log (3)+\log (9))) \int e^{-6 x} x^7 \, dx-(48 (4-\log (3)) (80-22 \log (3)+\log (9))) \int e^{-4 x} x^5 \, dx-(16 (448-108 \log (3)-\log (81))) \int e^{-6 x} x^6 \, dx+(48 (4-\log (3)) (160-36 \log (3)-\log (81))) \int e^{-4 x} x^4 \, dx-\left (48 (4-\log (3))^2 (64-12 \log (3)-\log (81))\right ) \int e^{-2 x} x^2 \, dx+\left (16 (4-\log (3))^2 (64-\log (43046721))\right ) \int e^{-2 x} x^3 \, dx\\ &=-72 e^{-8 x} x^8-\frac {144}{7} e^{-7 x} x^8+44 e^{-8 x} x^9+16 e^{-7 x} x^9+16 e^{-8 x} x^{10}+\frac {448}{5} e^{-5 x} x^6 (4-\log (3))-64 e^{-5 x} x^7 (4-\log (3))-64 e^{-6 x} x^8 (4-\log (3))-160 e^{-3 x} x^4 (4-\log (3))^2+96 e^{-3 x} x^5 (4-\log (3))^2+96 e^{-4 x} x^6 (4-\log (3))^2+192 e^{-x} x^2 (4-\log (3))^3-64 e^{-x} x^3 (4-\log (3))^3-64 e^{-2 x} x^4 (4-\log (3))^3-16 e^x (4-\log (3))^4+16 e^x (1+x) (4-\log (3))^4-\frac {8}{3} e^{-6 x} x^7 (256-66 \log (3)+\log (9))+12 e^{-4 x} x^5 (4-\log (3)) (80-22 \log (3)+\log (9))+\frac {8}{3} e^{-6 x} x^6 (448-108 \log (3)-\log (81))-12 e^{-4 x} x^4 (4-\log (3)) (160-36 \log (3)-\log (81))+24 e^{-2 x} x^2 (4-\log (3))^2 (64-12 \log (3)-\log (81))+\frac {8 (4-\log (3))^3 (16+8 x-x \log (9)-\log (81))^2}{8-\log (9)}-8 e^{-2 x} x^3 (4-\log (3))^2 (64-\log (43046721))-144 \int e^{-7 x} x^8 \, dx-160 \int e^{-8 x} x^9 \, dx+\frac {1152}{7} \int e^{-7 x} x^7 \, dx-396 \int e^{-8 x} x^8 \, dx+576 \int e^{-8 x} x^7 \, dx+(448 (4-\log (3))) \int e^{-5 x} x^6 \, dx+(512 (4-\log (3))) \int e^{-6 x} x^7 \, dx-\frac {1}{5} (2688 (4-\log (3))) \int e^{-5 x} x^5 \, dx-\left (480 (4-\log (3))^2\right ) \int e^{-3 x} x^4 \, dx-\left (576 (4-\log (3))^2\right ) \int e^{-4 x} x^5 \, dx+\left (640 (4-\log (3))^2\right ) \int e^{-3 x} x^3 \, dx+\left (192 (4-\log (3))^3\right ) \int e^{-x} x^2 \, dx+\left (256 (4-\log (3))^3\right ) \int e^{-2 x} x^3 \, dx-\left (384 (4-\log (3))^3\right ) \int e^{-x} x \, dx+\frac {1}{3} (56 (256-66 \log (3)+\log (9))) \int e^{-6 x} x^6 \, dx-(60 (4-\log (3)) (80-22 \log (3)+\log (9))) \int e^{-4 x} x^4 \, dx-(16 (448-108 \log (3)-\log (81))) \int e^{-6 x} x^5 \, dx+(48 (4-\log (3)) (160-36 \log (3)-\log (81))) \int e^{-4 x} x^3 \, dx-\left (48 (4-\log (3))^2 (64-12 \log (3)-\log (81))\right ) \int e^{-2 x} x \, dx+\left (24 (4-\log (3))^2 (64-\log (43046721))\right ) \int e^{-2 x} x^2 \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 207, normalized size = 8.62 \begin {gather*} 16 \left (e^{-7 x} x^9+e^{-8 x} x^9 (4+x)+4 e^{-5 x} x^7 (-4+\log (3))+6 e^{-3 x} x^5 (-4+\log (3))^2+4 e^{-x} x^3 (-4+\log (3))^3+e^x x (-4+\log (3))^4+\frac {1}{2} e^{-2 x} x^3 (-4+\log (3))^2 (-128+8 x (-4+\log (3))+38 \log (3)-3 \log (9))+\frac {3}{4} e^{-4 x} x^5 (-4+\log (3)) (-128+8 x (-4+\log (3))+34 \log (3)-\log (9))+\frac {1}{6} e^{-6 x} x^7 (-384+24 x (-4+\log (3))+98 \log (3)-\log (9))+\frac {1}{2} x^2 (-4+\log (3))^3 (-8+\log (9))+x (-4+\log (3))^3 (-16+\log (81))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 333, normalized size = 13.88 \begin {gather*} 16 \, {\left (x^{10} + x^{9} e^{x} + 4 \, x^{9} + {\left (x \log \relax (3)^{4} - 16 \, x \log \relax (3)^{3} + 96 \, x \log \relax (3)^{2} - 256 \, x \log \relax (3) + 256 \, x\right )} e^{\left (9 \, x\right )} + {\left ({\left (x^{2} + 4 \, x\right )} \log \relax (3)^{4} - 16 \, {\left (x^{2} + 4 \, x\right )} \log \relax (3)^{3} + 96 \, {\left (x^{2} + 4 \, x\right )} \log \relax (3)^{2} + 256 \, x^{2} - 256 \, {\left (x^{2} + 4 \, x\right )} \log \relax (3) + 1024 \, x\right )} e^{\left (8 \, x\right )} + 4 \, {\left (x^{3} \log \relax (3)^{3} - 12 \, x^{3} \log \relax (3)^{2} + 48 \, x^{3} \log \relax (3) - 64 \, x^{3}\right )} e^{\left (7 \, x\right )} - 4 \, {\left (64 \, x^{4} - {\left (x^{4} + 4 \, x^{3}\right )} \log \relax (3)^{3} + 256 \, x^{3} + 12 \, {\left (x^{4} + 4 \, x^{3}\right )} \log \relax (3)^{2} - 48 \, {\left (x^{4} + 4 \, x^{3}\right )} \log \relax (3)\right )} e^{\left (6 \, x\right )} + 6 \, {\left (x^{5} \log \relax (3)^{2} - 8 \, x^{5} \log \relax (3) + 16 \, x^{5}\right )} e^{\left (5 \, x\right )} + 6 \, {\left (16 \, x^{6} + 64 \, x^{5} + {\left (x^{6} + 4 \, x^{5}\right )} \log \relax (3)^{2} - 8 \, {\left (x^{6} + 4 \, x^{5}\right )} \log \relax (3)\right )} e^{\left (4 \, x\right )} + 4 \, {\left (x^{7} \log \relax (3) - 4 \, x^{7}\right )} e^{\left (3 \, x\right )} - 4 \, {\left (4 \, x^{8} + 16 \, x^{7} - {\left (x^{8} + 4 \, x^{7}\right )} \log \relax (3)\right )} e^{\left (2 \, x\right )}\right )} e^{\left (-8 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 432, normalized size = 18.00 \begin {gather*} 16 \, x^{10} e^{\left (-8 \, x\right )} + 16 \, x^{9} e^{\left (-7 \, x\right )} + 64 \, x^{9} e^{\left (-8 \, x\right )} + 64 \, x^{8} e^{\left (-6 \, x\right )} \log \relax (3) - 256 \, x^{8} e^{\left (-6 \, x\right )} + 64 \, x^{7} e^{\left (-5 \, x\right )} \log \relax (3) + 256 \, x^{7} e^{\left (-6 \, x\right )} \log \relax (3) + 96 \, x^{6} e^{\left (-4 \, x\right )} \log \relax (3)^{2} - 256 \, x^{7} e^{\left (-5 \, x\right )} - 1024 \, x^{7} e^{\left (-6 \, x\right )} - 768 \, x^{6} e^{\left (-4 \, x\right )} \log \relax (3) + 96 \, x^{5} e^{\left (-3 \, x\right )} \log \relax (3)^{2} + 384 \, x^{5} e^{\left (-4 \, x\right )} \log \relax (3)^{2} + 64 \, x^{4} e^{\left (-2 \, x\right )} \log \relax (3)^{3} + 1536 \, x^{6} e^{\left (-4 \, x\right )} - 768 \, x^{5} e^{\left (-3 \, x\right )} \log \relax (3) - 3072 \, x^{5} e^{\left (-4 \, x\right )} \log \relax (3) - 768 \, x^{4} e^{\left (-2 \, x\right )} \log \relax (3)^{2} + 64 \, x^{3} e^{\left (-x\right )} \log \relax (3)^{3} + 256 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (3)^{3} + 1536 \, x^{5} e^{\left (-3 \, x\right )} + 6144 \, x^{5} e^{\left (-4 \, x\right )} + 3072 \, x^{4} e^{\left (-2 \, x\right )} \log \relax (3) - 768 \, x^{3} e^{\left (-x\right )} \log \relax (3)^{2} - 3072 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (3)^{2} + 16 \, x^{2} \log \relax (3)^{4} + 16 \, x e^{x} \log \relax (3)^{4} - 4096 \, x^{4} e^{\left (-2 \, x\right )} + 3072 \, x^{3} e^{\left (-x\right )} \log \relax (3) + 12288 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (3) - 256 \, x^{2} \log \relax (3)^{3} - 256 \, x e^{x} \log \relax (3)^{3} + 64 \, x \log \relax (3)^{4} - 4096 \, x^{3} e^{\left (-x\right )} - 16384 \, x^{3} e^{\left (-2 \, x\right )} + 1536 \, x^{2} \log \relax (3)^{2} + 1536 \, x e^{x} \log \relax (3)^{2} - 1024 \, x \log \relax (3)^{3} - 4096 \, x^{2} \log \relax (3) - 4096 \, x e^{x} \log \relax (3) + 6144 \, x \log \relax (3)^{2} + 4096 \, x^{2} + 4096 \, x e^{x} - 16384 \, x \log \relax (3) + 16384 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 323, normalized size = 13.46
method | result | size |
risch | \(16 x^{2} \ln \relax (3)^{4}+64 x \ln \relax (3)^{4}-256 \ln \relax (3)^{3} x^{2}-1024 x \ln \relax (3)^{3}+1536 x^{2} \ln \relax (3)^{2}+6144 x \ln \relax (3)^{2}-4096 x^{2} \ln \relax (3)-16384 x \ln \relax (3)+4096 x^{2}+16384 x +16 \left (\ln \relax (3)^{4}-16 \ln \relax (3)^{3}+96 \ln \relax (3)^{2}-256 \ln \relax (3)+256\right ) x \,{\mathrm e}^{x}+64 \left (\ln \relax (3)^{3}-12 \ln \relax (3)^{2}+48 \ln \relax (3)-64\right ) x^{3} {\mathrm e}^{-x}+\left (64 x^{4} \ln \relax (3)^{3}+256 x^{3} \ln \relax (3)^{3}-768 x^{4} \ln \relax (3)^{2}-3072 x^{3} \ln \relax (3)^{2}+3072 x^{4} \ln \relax (3)+12288 x^{3} \ln \relax (3)-4096 x^{4}-16384 x^{3}\right ) {\mathrm e}^{-2 x}+96 \left (\ln \relax (3)^{2}-8 \ln \relax (3)+16\right ) x^{5} {\mathrm e}^{-3 x}+\left (96 x^{6} \ln \relax (3)^{2}+384 x^{5} \ln \relax (3)^{2}-768 x^{6} \ln \relax (3)-3072 x^{5} \ln \relax (3)+1536 x^{6}+6144 x^{5}\right ) {\mathrm e}^{-4 x}+64 \left (-4+\ln \relax (3)\right ) x^{7} {\mathrm e}^{-5 x}+\left (64 x^{8} \ln \relax (3)+256 \ln \relax (3) x^{7}-256 x^{8}-1024 x^{7}\right ) {\mathrm e}^{-6 x}+16 \,{\mathrm e}^{-7 x} x^{9}+\left (16 x^{10}+64 x^{9}\right ) {\mathrm e}^{-8 x}\) | \(323\) |
default | \(16384 x +1536 x \ln \relax (3)^{2} {\mathrm e}^{x}-4096 x^{2} \ln \relax (3)+4096 x^{2}-1024 x \ln \relax (3)^{3}+6144 x \ln \relax (3)^{2}-16384 x \ln \relax (3)+64 x \ln \relax (3)^{4}+4096 \,{\mathrm e}^{x} x -4096 x^{3} {\mathrm e}^{-x}+1536 x^{5} {\mathrm e}^{-3 x}-256 x^{7} {\mathrm e}^{-5 x}-4096 x \ln \relax (3) {\mathrm e}^{x}+16 x^{2} \ln \relax (3)^{4}+1536 x^{2} \ln \relax (3)^{2}+16 \,{\mathrm e}^{-7 x} x^{9}-4096 x^{4} {\mathrm e}^{-2 x}-1024 \,{\mathrm e}^{-6 x} x^{7}-256 \ln \relax (3)^{3} x^{2}-256 \,{\mathrm e}^{-6 x} x^{8}+16 \,{\mathrm e}^{-8 x} x^{10}+64 \,{\mathrm e}^{-8 x} x^{9}-16384 \,{\mathrm e}^{-2 x} x^{3}+1536 \,{\mathrm e}^{-4 x} x^{6}+6144 \,{\mathrm e}^{-4 x} x^{5}+256 \,{\mathrm e}^{-2 x} \ln \relax (3)^{3} x^{3}-768 \,{\mathrm e}^{-2 x} \ln \relax (3)^{2} x^{4}+96 \,{\mathrm e}^{-3 x} \ln \relax (3)^{2} x^{5}+96 \,{\mathrm e}^{-4 x} \ln \relax (3)^{2} x^{6}+3072 \,{\mathrm e}^{-x} \ln \relax (3) x^{3}-3072 \,{\mathrm e}^{-2 x} \ln \relax (3)^{2} x^{3}+3072 \,{\mathrm e}^{-2 x} \ln \relax (3) x^{4}-768 \,{\mathrm e}^{-3 x} \ln \relax (3) x^{5}+384 \,{\mathrm e}^{-4 x} \ln \relax (3)^{2} x^{5}-768 \,{\mathrm e}^{-4 x} \ln \relax (3) x^{6}+64 \,{\mathrm e}^{-5 x} \ln \relax (3) x^{7}+64 \,{\mathrm e}^{-6 x} \ln \relax (3) x^{8}+12288 \,{\mathrm e}^{-2 x} \ln \relax (3) x^{3}-3072 \,{\mathrm e}^{-4 x} \ln \relax (3) x^{5}+256 \,{\mathrm e}^{-6 x} \ln \relax (3) x^{7}+64 \,{\mathrm e}^{-x} \ln \relax (3)^{3} x^{3}+64 \,{\mathrm e}^{-2 x} \ln \relax (3)^{3} x^{4}-768 \,{\mathrm e}^{-x} \ln \relax (3)^{2} x^{3}+16 \,{\mathrm e}^{x} \ln \relax (3)^{4} x -256 \,{\mathrm e}^{x} \ln \relax (3)^{3} x\) | \(433\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.76, size = 1726, normalized size = 71.92 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.65, size = 183, normalized size = 7.62 \begin {gather*} 64\,x\,{\left (\ln \relax (3)-4\right )}^4+16\,x^2\,{\left (\ln \relax (3)-4\right )}^4+{\mathrm {e}}^{-8\,x}\,\left (16\,x^{10}+64\,x^9\right )+16\,x^9\,{\mathrm {e}}^{-7\,x}+{\mathrm {e}}^{-6\,x}\,\left (\left (64\,\ln \relax (3)-256\right )\,x^8+\left (256\,\ln \relax (3)-1024\right )\,x^7\right )+{\mathrm {e}}^{-2\,x}\,\left (64\,{\left (\ln \relax (3)-4\right )}^3\,x^4+256\,{\left (\ln \relax (3)-4\right )}^3\,x^3\right )+{\mathrm {e}}^{-4\,x}\,\left (96\,{\left (\ln \relax (3)-4\right )}^2\,x^6+384\,{\left (\ln \relax (3)-4\right )}^2\,x^5\right )+x^7\,{\mathrm {e}}^{-5\,x}\,\left (64\,\ln \relax (3)-256\right )+64\,x^3\,{\mathrm {e}}^{-x}\,{\left (\ln \relax (3)-4\right )}^3+96\,x^5\,{\mathrm {e}}^{-3\,x}\,{\left (\ln \relax (3)-4\right )}^2+16\,x\,{\mathrm {e}}^x\,{\left (\ln \relax (3)-4\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.85, size = 366, normalized size = 15.25 \begin {gather*} 16 x^{9} e^{- 7 x} + x^{2} \left (- 4096 \log {\relax (3 )} - 256 \log {\relax (3 )}^{3} + 16 \log {\relax (3 )}^{4} + 1536 \log {\relax (3 )}^{2} + 4096\right ) + x \left (- 16384 \log {\relax (3 )} - 1024 \log {\relax (3 )}^{3} + 64 \log {\relax (3 )}^{4} + 6144 \log {\relax (3 )}^{2} + 16384\right ) + \left (- 256 x^{7} + 64 x^{7} \log {\relax (3 )}\right ) e^{- 5 x} + \left (16 x^{10} + 64 x^{9}\right ) e^{- 8 x} + \left (- 768 x^{5} \log {\relax (3 )} + 96 x^{5} \log {\relax (3 )}^{2} + 1536 x^{5}\right ) e^{- 3 x} + \left (- 4096 x^{3} - 768 x^{3} \log {\relax (3 )}^{2} + 64 x^{3} \log {\relax (3 )}^{3} + 3072 x^{3} \log {\relax (3 )}\right ) e^{- x} + \left (- 256 x^{8} + 64 x^{8} \log {\relax (3 )} - 1024 x^{7} + 256 x^{7} \log {\relax (3 )}\right ) e^{- 6 x} + \left (- 4096 x \log {\relax (3 )} - 256 x \log {\relax (3 )}^{3} + 16 x \log {\relax (3 )}^{4} + 1536 x \log {\relax (3 )}^{2} + 4096 x\right ) e^{x} + \left (- 768 x^{6} \log {\relax (3 )} + 96 x^{6} \log {\relax (3 )}^{2} + 1536 x^{6} - 3072 x^{5} \log {\relax (3 )} + 384 x^{5} \log {\relax (3 )}^{2} + 6144 x^{5}\right ) e^{- 4 x} + \left (- 4096 x^{4} - 768 x^{4} \log {\relax (3 )}^{2} + 64 x^{4} \log {\relax (3 )}^{3} + 3072 x^{4} \log {\relax (3 )} - 16384 x^{3} - 3072 x^{3} \log {\relax (3 )}^{2} + 256 x^{3} \log {\relax (3 )}^{3} + 12288 x^{3} \log {\relax (3 )}\right ) e^{- 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________