Optimal. Leaf size=28 \[ \left (e^{2 x-2 \left (-1-e^x\right ) x \left (x+\log ^2(x)\right )}-x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 10.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (2 x+\exp \left (4 x+4 x^2+4 e^x x^2+4 \left (x+e^x x\right ) \log ^2(x)\right ) \left (4+8 x+e^x \left (8 x+4 x^2\right )+\left (8+8 e^x\right ) \log (x)+\left (4+e^x (4+4 x)\right ) \log ^2(x)\right )+\exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (-2-4 x-8 x^2+e^x \left (-8 x^2-4 x^3\right )+\left (-8 x-8 e^x x\right ) \log (x)+\left (-4 x+e^x \left (-4 x-4 x^2\right )\right ) \log ^2(x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2+\int \exp \left (4 x+4 x^2+4 e^x x^2+4 \left (x+e^x x\right ) \log ^2(x)\right ) \left (4+8 x+e^x \left (8 x+4 x^2\right )+\left (8+8 e^x\right ) \log (x)+\left (4+e^x (4+4 x)\right ) \log ^2(x)\right ) \, dx+\int \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (-2-4 x-8 x^2+e^x \left (-8 x^2-4 x^3\right )+\left (-8 x-8 e^x x\right ) \log (x)+\left (-4 x+e^x \left (-4 x-4 x^2\right )\right ) \log ^2(x)\right ) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+\int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \left (4+8 x+e^x \left (8 x+4 x^2\right )+\left (8+8 e^x\right ) \log (x)+\left (4+e^x (4+4 x)\right ) \log ^2(x)\right ) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+\int \left (4 e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )}+8 e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x+4 \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x (2+x)+8 e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \left (1+e^x\right ) \log (x)+4 e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \left (1+e^x+e^x x\right ) \log ^2(x)\right ) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x (2+x) \, dx+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \left (1+e^x+e^x x\right ) \log ^2(x) \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \left (1+e^x\right ) \log (x) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \, dx+4 \int \left (2 \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x+\exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x^2\right ) \, dx+4 \int \left (e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log ^2(x)+\exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) (1+x) \log ^2(x)\right ) \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x \, dx+8 \int \left (e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log (x)+\exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log (x)\right ) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x^2 \, dx+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log ^2(x) \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) (1+x) \log ^2(x) \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log (x) \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log (x) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x^2 \, dx+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log ^2(x) \, dx+4 \int \left (\exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log ^2(x)+\exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x \log ^2(x)\right ) \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log (x) \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log (x) \, dx\\ &=x^2-\frac {2 \exp \left (2 x+2 x^2+2 e^x x^2+2 \left (x+e^x x\right ) \log ^2(x)\right ) \left (x+2 x^2+e^x \left (2 x^2+x^3\right )+2 \left (x+e^x x\right ) \log (x)+\left (x+e^x \left (x+x^2\right )\right ) \log ^2(x)\right )}{1+2 x+2 e^x x+e^x x^2+\frac {2 \left (x+e^x x\right ) \log (x)}{x}+\left (1+e^x+e^x x\right ) \log ^2(x)}+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x^2 \, dx+4 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log ^2(x) \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log ^2(x) \, dx+4 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x \log ^2(x) \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} x \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) x \, dx+8 \int e^{4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )} \log (x) \, dx+8 \int \exp \left (x+4 x \left (1+x+e^x x+\log ^2(x)+e^x \log ^2(x)\right )\right ) \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 7.53, size = 29, normalized size = 1.04 \begin {gather*} \left (e^{2 x \left (1+x+e^x x+\left (1+e^x\right ) \log ^2(x)\right )}-x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 65, normalized size = 2.32 \begin {gather*} x^{2} - 2 \, x e^{\left (2 \, x^{2} e^{x} + 2 \, {\left (x e^{x} + x\right )} \log \relax (x)^{2} + 2 \, x^{2} + 2 \, x\right )} + e^{\left (4 \, x^{2} e^{x} + 4 \, {\left (x e^{x} + x\right )} \log \relax (x)^{2} + 4 \, x^{2} + 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 4 \, {\left ({\left ({\left (x + 1\right )} e^{x} + 1\right )} \log \relax (x)^{2} + {\left (x^{2} + 2 \, x\right )} e^{x} + 2 \, {\left (e^{x} + 1\right )} \log \relax (x) + 2 \, x + 1\right )} e^{\left (4 \, x^{2} e^{x} + 4 \, {\left (x e^{x} + x\right )} \log \relax (x)^{2} + 4 \, x^{2} + 4 \, x\right )} - 2 \, {\left (2 \, {\left ({\left (x^{2} + x\right )} e^{x} + x\right )} \log \relax (x)^{2} + 4 \, x^{2} + 2 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{x} + 4 \, {\left (x e^{x} + x\right )} \log \relax (x) + 2 \, x + 1\right )} e^{\left (2 \, x^{2} e^{x} + 2 \, {\left (x e^{x} + x\right )} \log \relax (x)^{2} + 2 \, x^{2} + 2 \, x\right )} + 2 \, x\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 52, normalized size = 1.86
method | result | size |
risch | \({\mathrm e}^{4 x \left ({\mathrm e}^{x} \ln \relax (x )^{2}+\ln \relax (x )^{2}+{\mathrm e}^{x} x +x +1\right )}-2 \,{\mathrm e}^{2 x \left ({\mathrm e}^{x} \ln \relax (x )^{2}+\ln \relax (x )^{2}+{\mathrm e}^{x} x +x +1\right )} x +x^{2}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.88, size = 73, normalized size = 2.61 \begin {gather*} x^{2} - 2 \, x e^{\left (2 \, x e^{x} \log \relax (x)^{2} + 2 \, x^{2} e^{x} + 2 \, x \log \relax (x)^{2} + 2 \, x^{2} + 2 \, x\right )} + e^{\left (4 \, x e^{x} \log \relax (x)^{2} + 4 \, x^{2} e^{x} + 4 \, x \log \relax (x)^{2} + 4 \, x^{2} + 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.33, size = 80, normalized size = 2.86 \begin {gather*} x^2+{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{4\,x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{4\,x^2}-2\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{2\,x^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{2\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.18, size = 70, normalized size = 2.50 \begin {gather*} x^{2} - 2 x e^{2 x^{2} e^{x} + 2 x^{2} + 2 x + 2 \left (x e^{x} + x\right ) \log {\relax (x )}^{2}} + e^{4 x^{2} e^{x} + 4 x^{2} + 4 x + 4 \left (x e^{x} + x\right ) \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________