Optimal. Leaf size=27 \[ 3-\frac {5}{4+x}+\log \left (4-\log \left (x^2 \left (1+x+x^2\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.16, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 3, integrand size = 131, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 6728, 6684} \begin {gather*} \log \left (4-\log \left (x^2 \left (x^2+x+1\right )^2\right )\right )-\frac {5}{x+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32-60 x-110 x^2-32 x^3-6 x^4-5 x \left (1+x+x^2\right ) \log \left (x^2 \left (1+x+x^2\right )^2\right )}{x (4+x)^2 \left (1+x+x^2\right ) \left (4-\log \left (x^2 \left (1+x+x^2\right )^2\right )\right )} \, dx\\ &=\int \left (\frac {5}{(4+x)^2}+\frac {2 \left (1+2 x+3 x^2\right )}{x \left (1+x+x^2\right ) \left (-4+\log \left (x^2 \left (1+x+x^2\right )^2\right )\right )}\right ) \, dx\\ &=-\frac {5}{4+x}+2 \int \frac {1+2 x+3 x^2}{x \left (1+x+x^2\right ) \left (-4+\log \left (x^2 \left (1+x+x^2\right )^2\right )\right )} \, dx\\ &=-\frac {5}{4+x}+\log \left (4-\log \left (x^2 \left (1+x+x^2\right )^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 26, normalized size = 0.96 \begin {gather*} -\frac {5}{4+x}+\log \left (4-\log \left (x^2 \left (1+x+x^2\right )^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 38, normalized size = 1.41 \begin {gather*} \frac {{\left (x + 4\right )} \log \left (\log \left (x^{6} + 2 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} + x^{2}\right ) - 4\right ) - 5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 34, normalized size = 1.26 \begin {gather*} -\frac {5}{x + 4} + \log \left (\log \left (x^{6} + 2 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} + x^{2}\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 35, normalized size = 1.30
method | result | size |
norman | \(-\frac {5}{4+x}+\ln \left (\ln \left (x^{6}+2 x^{5}+3 x^{4}+2 x^{3}+x^{2}\right )-4\right )\) | \(35\) |
risch | \(-\frac {5}{4+x}+\ln \left (\ln \left (x^{6}+2 x^{5}+3 x^{4}+2 x^{3}+x^{2}\right )-4\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 20, normalized size = 0.74 \begin {gather*} -\frac {5}{x + 4} + \log \left (\log \left (x^{2} + x + 1\right ) + \log \relax (x) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.86, size = 34, normalized size = 1.26 \begin {gather*} \ln \left (\ln \left (x^6+2\,x^5+3\,x^4+2\,x^3+x^2\right )-4\right )-\frac {5}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 31, normalized size = 1.15 \begin {gather*} \log {\left (\log {\left (x^{6} + 2 x^{5} + 3 x^{4} + 2 x^{3} + x^{2} \right )} - 4 \right )} - \frac {5}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________