Optimal. Leaf size=22 \[ -5-\frac {x}{3}-4 e^x x+x \left (-\frac {2}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 2176, 2194} \begin {gather*} x^2-\frac {x}{3}+4 e^x-4 e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-1+e^x (-12-12 x)+6 x\right ) \, dx\\ &=-\frac {x}{3}+x^2+\frac {1}{3} \int e^x (-12-12 x) \, dx\\ &=-\frac {x}{3}+x^2-4 e^x (1+x)+4 \int e^x \, dx\\ &=4 e^x-\frac {x}{3}+x^2-4 e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.68 \begin {gather*} -\frac {x}{3}-4 e^x x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 12, normalized size = 0.55 \begin {gather*} x^{2} - 4 \, x e^{x} - \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 12, normalized size = 0.55 \begin {gather*} x^{2} - 4 \, x e^{x} - \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 13, normalized size = 0.59
method | result | size |
default | \(-\frac {x}{3}+x^{2}-4 \,{\mathrm e}^{x} x\) | \(13\) |
norman | \(-\frac {x}{3}+x^{2}-4 \,{\mathrm e}^{x} x\) | \(13\) |
risch | \(-\frac {x}{3}+x^{2}-4 \,{\mathrm e}^{x} x\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 12, normalized size = 0.55 \begin {gather*} x^{2} - 4 \, x e^{x} - \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 12, normalized size = 0.55 \begin {gather*} -\frac {x\,\left (12\,{\mathrm {e}}^x-3\,x+1\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.55 \begin {gather*} x^{2} - 4 x e^{x} - \frac {x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________