Optimal. Leaf size=27 \[ \frac {1}{2} \left (1+e^{8+x-\frac {5 x}{4-x^2}}-2 x\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.93, antiderivative size = 143, normalized size of antiderivative = 5.30, number of steps used = 18, number of rules used = 10, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.124, Rules used = {28, 6742, 199, 207, 261, 288, 266, 43, 321, 2288} \begin {gather*} -x^2-\frac {x}{4-x^2}+\frac {x^3}{4 \left (4-x^2\right )}+\frac {e^{\frac {-x^3-8 x^2-x+32}{4-x^2}} \left (-x^5+13 x^3+4 x\right )}{2 \left (4-x^2\right )^2 \left (\frac {3 x^2+16 x+1}{4-x^2}-\frac {2 x \left (-x^3-8 x^2-x+32\right )}{\left (4-x^2\right )^2}\right )}+\frac {3 x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 43
Rule 199
Rule 207
Rule 261
Rule 266
Rule 288
Rule 321
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int \frac {16-64 x-8 x^2+32 x^3+x^4-4 x^5+e^{\frac {-32+x+8 x^2+x^3}{-4+x^2}} \left (16-4 x-8 x^2-13 x^3+x^4+x^5\right )}{\left (-8+2 x^2\right )^2} \, dx\\ &=2 \int \left (\frac {4}{\left (-4+x^2\right )^2}-\frac {16 x}{\left (-4+x^2\right )^2}-\frac {2 x^2}{\left (-4+x^2\right )^2}+\frac {8 x^3}{\left (-4+x^2\right )^2}+\frac {x^4}{4 \left (-4+x^2\right )^2}-\frac {x^5}{\left (-4+x^2\right )^2}+\frac {e^{\frac {-32+x+8 x^2+x^3}{-4+x^2}} \left (16-4 x-8 x^2-13 x^3+x^4+x^5\right )}{4 \left (4-x^2\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x^4}{\left (-4+x^2\right )^2} \, dx+\frac {1}{2} \int \frac {e^{\frac {-32+x+8 x^2+x^3}{-4+x^2}} \left (16-4 x-8 x^2-13 x^3+x^4+x^5\right )}{\left (4-x^2\right )^2} \, dx-2 \int \frac {x^5}{\left (-4+x^2\right )^2} \, dx-4 \int \frac {x^2}{\left (-4+x^2\right )^2} \, dx+8 \int \frac {1}{\left (-4+x^2\right )^2} \, dx+16 \int \frac {x^3}{\left (-4+x^2\right )^2} \, dx-32 \int \frac {x}{\left (-4+x^2\right )^2} \, dx\\ &=-\frac {16}{4-x^2}-\frac {x}{4-x^2}+\frac {x^3}{4 \left (4-x^2\right )}+\frac {e^{\frac {32-x-8 x^2-x^3}{4-x^2}} \left (4 x+13 x^3-x^5\right )}{2 \left (4-x^2\right )^2 \left (\frac {1+16 x+3 x^2}{4-x^2}-\frac {2 x \left (32-x-8 x^2-x^3\right )}{\left (4-x^2\right )^2}\right )}+\frac {3}{4} \int \frac {x^2}{-4+x^2} \, dx-2 \int \frac {1}{-4+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {x}{(-4+x)^2} \, dx,x,x^2\right )-\int \frac {1}{-4+x^2} \, dx-\operatorname {Subst}\left (\int \frac {x^2}{(-4+x)^2} \, dx,x,x^2\right )\\ &=\frac {3 x}{4}-\frac {16}{4-x^2}-\frac {x}{4-x^2}+\frac {x^3}{4 \left (4-x^2\right )}+\frac {e^{\frac {32-x-8 x^2-x^3}{4-x^2}} \left (4 x+13 x^3-x^5\right )}{2 \left (4-x^2\right )^2 \left (\frac {1+16 x+3 x^2}{4-x^2}-\frac {2 x \left (32-x-8 x^2-x^3\right )}{\left (4-x^2\right )^2}\right )}+\frac {3}{2} \tanh ^{-1}\left (\frac {x}{2}\right )+3 \int \frac {1}{-4+x^2} \, dx+8 \operatorname {Subst}\left (\int \left (\frac {4}{(-4+x)^2}+\frac {1}{-4+x}\right ) \, dx,x,x^2\right )-\operatorname {Subst}\left (\int \left (1+\frac {16}{(-4+x)^2}+\frac {8}{-4+x}\right ) \, dx,x,x^2\right )\\ &=\frac {3 x}{4}-x^2-\frac {x}{4-x^2}+\frac {x^3}{4 \left (4-x^2\right )}+\frac {e^{\frac {32-x-8 x^2-x^3}{4-x^2}} \left (4 x+13 x^3-x^5\right )}{2 \left (4-x^2\right )^2 \left (\frac {1+16 x+3 x^2}{4-x^2}-\frac {2 x \left (32-x-8 x^2-x^3\right )}{\left (4-x^2\right )^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 31, normalized size = 1.15 \begin {gather*} \frac {1}{2} \left (1+e^{\frac {-32+x+8 x^2+x^3}{-4+x^2}}-2 x\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 32, normalized size = 1.19 \begin {gather*} -x^{2} + \frac {1}{2} \, x e^{\left (\frac {x^{3} + 8 \, x^{2} + x - 32}{x^{2} - 4}\right )} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 28, normalized size = 1.04 \begin {gather*} -x^{2} + \frac {1}{2} \, x e^{\left (\frac {x^{3} + x}{x^{2} - 4} + 8\right )} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 36, normalized size = 1.33
method | result | size |
risch | \(-x^{2}+\frac {x}{2}+\frac {{\mathrm e}^{\frac {x^{3}+8 x^{2}+x -32}{\left (x -2\right ) \left (2+x \right )}} x}{2}\) | \(36\) |
norman | \(\frac {-2 x +\frac {x^{3}}{2}-x^{4}-2 \,{\mathrm e}^{\frac {x^{3}+8 x^{2}+x -32}{x^{2}-4}} x +\frac {{\mathrm e}^{\frac {x^{3}+8 x^{2}+x -32}{x^{2}-4}} x^{3}}{2}+16}{x^{2}-4}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 30, normalized size = 1.11 \begin {gather*} -x^{2} + \frac {1}{2} \, x e^{\left (x + \frac {5}{2 \, {\left (x + 2\right )}} + \frac {5}{2 \, {\left (x - 2\right )}} + 8\right )} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 57, normalized size = 2.11 \begin {gather*} \frac {x}{2}-x^2+\frac {x\,{\mathrm {e}}^{\frac {x^3}{x^2-4}}\,{\mathrm {e}}^{\frac {8\,x^2}{x^2-4}}\,{\mathrm {e}}^{-\frac {32}{x^2-4}}\,{\mathrm {e}}^{\frac {x}{x^2-4}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 27, normalized size = 1.00 \begin {gather*} - x^{2} + \frac {x e^{\frac {x^{3} + 8 x^{2} + x - 32}{x^{2} - 4}}}{2} + \frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________