Optimal. Leaf size=33 \[ -\frac {x^2}{3-x}+\log \left (x+\frac {5-x}{\left (x+x^3\right ) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-45+39 x-56 x^2+40 x^3-11 x^4+x^5+\left (-45+30 x-170 x^2+119 x^3-58 x^4+13 x^5-x^6\right ) \log (x)+\left (9 x^2-6 x^3+13 x^4-11 x^5-x^6-4 x^7-5 x^8+x^9\right ) \log ^2(x)}{\left (45 x-39 x^2+56 x^3-40 x^4+11 x^5-x^6\right ) \log (x)+\left (9 x^3-6 x^4+19 x^5-12 x^6+11 x^7-6 x^8+x^9\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-3+x)^2 \left (-5+x-5 x^2+x^3\right )-\left (45-30 x+170 x^2-119 x^3+58 x^4-13 x^5+x^6\right ) \log (x)+\left (x+x^3\right )^2 \left (9-6 x-5 x^2+x^3\right ) \log ^2(x)}{(3-x)^2 x \left (1+x^2\right ) \log (x) \left (5-x+\left (x^2+x^4\right ) \log (x)\right )} \, dx\\ &=\int \left (\frac {9-6 x-5 x^2+x^3}{(-3+x)^2 x}-\frac {1}{x \log (x)}+\frac {x \left (1+x^2\right )}{5-x+x^2 \log (x)+x^4 \log (x)}+\frac {-10+x-20 x^2+3 x^3}{x \left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}\right ) \, dx\\ &=\int \frac {9-6 x-5 x^2+x^3}{(-3+x)^2 x} \, dx-\int \frac {1}{x \log (x)} \, dx+\int \frac {x \left (1+x^2\right )}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {-10+x-20 x^2+3 x^3}{x \left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx\\ &=\int \left (1-\frac {9}{(-3+x)^2}+\frac {1}{x}\right ) \, dx+\int \left (\frac {x}{5-x+x^2 \log (x)+x^4 \log (x)}+\frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)}\right ) \, dx+\int \left (\frac {3}{5-x+x^2 \log (x)+x^4 \log (x)}-\frac {10}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}-\frac {2 (1+5 x)}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-\frac {9}{3-x}+x+\log (x)-\log (\log (x))-2 \int \frac {1+5 x}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+3 \int \frac {1}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx-10 \int \frac {1}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+\int \frac {x}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx\\ &=-\frac {9}{3-x}+x+\log (x)-\log (\log (x))-2 \int \left (\frac {1}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}+\frac {5 x}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}\right ) \, dx+3 \int \frac {1}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx-10 \int \frac {1}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+\int \frac {x}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx\\ &=-\frac {9}{3-x}+x+\log (x)-\log (\log (x))-2 \int \frac {1}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+3 \int \frac {1}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx-10 \int \frac {1}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx-10 \int \frac {x}{\left (1+x^2\right ) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+\int \frac {x}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx\\ &=-\frac {9}{3-x}+x+\log (x)-\log (\log (x))-2 \int \left (\frac {i}{2 (i-x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}+\frac {i}{2 (i+x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}\right ) \, dx+3 \int \frac {1}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx-10 \int \frac {1}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx-10 \int \left (-\frac {1}{2 (i-x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}+\frac {1}{2 (i+x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )}\right ) \, dx+\int \frac {x}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx\\ &=-\frac {9}{3-x}+x+\log (x)-\log (\log (x))-i \int \frac {1}{(i-x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx-i \int \frac {1}{(i+x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+3 \int \frac {1}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+5 \int \frac {1}{(i-x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx-5 \int \frac {1}{(i+x) \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx-10 \int \frac {1}{x \left (5-x+x^2 \log (x)+x^4 \log (x)\right )} \, dx+\int \frac {x}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx+\int \frac {x^3}{5-x+x^2 \log (x)+x^4 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 44, normalized size = 1.33 \begin {gather*} \frac {9}{-3+x}+x-\log (x)-\log \left (1+x^2\right )-\log (\log (x))+\log \left (5-x+x^2 \log (x)+x^4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 58, normalized size = 1.76 \begin {gather*} \frac {x^{2} + {\left (x - 3\right )} \log \relax (x) + {\left (x - 3\right )} \log \left (\frac {{\left (x^{4} + x^{2}\right )} \log \relax (x) - x + 5}{x^{4} + x^{2}}\right ) - {\left (x - 3\right )} \log \left (\log \relax (x)\right ) - 3 \, x + 9}{x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 44, normalized size = 1.33 \begin {gather*} x + \frac {9}{x - 3} + \log \left (x^{4} \log \relax (x) + x^{2} \log \relax (x) - x + 5\right ) - \log \left (x^{2} + 1\right ) - \log \relax (x) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 48, normalized size = 1.45
method | result | size |
risch | \(\frac {x \ln \relax (x )+x^{2}-3 \ln \relax (x )-3 x +9}{x -3}+\ln \left (\ln \relax (x )-\frac {x -5}{x^{2} \left (x^{2}+1\right )}\right )-\ln \left (\ln \relax (x )\right )\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 48, normalized size = 1.45 \begin {gather*} \frac {x^{2} - 3 \, x + 9}{x - 3} + \log \relax (x) + \log \left (\frac {{\left (x^{4} + x^{2}\right )} \log \relax (x) - x + 5}{x^{4} + x^{2}}\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \relax (x)\,\left (x^6-13\,x^5+58\,x^4-119\,x^3+170\,x^2-30\,x+45\right )-39\,x+{\ln \relax (x)}^2\,\left (-x^9+5\,x^8+4\,x^7+x^6+11\,x^5-13\,x^4+6\,x^3-9\,x^2\right )+56\,x^2-40\,x^3+11\,x^4-x^5+45}{\left (x^9-6\,x^8+11\,x^7-12\,x^6+19\,x^5-6\,x^4+9\,x^3\right )\,{\ln \relax (x)}^2+\left (-x^6+11\,x^5-40\,x^4+56\,x^3-39\,x^2+45\,x\right )\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________