Optimal. Leaf size=25 \[ \frac {5}{\frac {x}{5}+e^{-\frac {26}{5}-x^2} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25 x+e^{\frac {1}{5} \left (-26-5 x^2+5 \log \left (x^2\right )\right )} \left (-250+250 x^2\right )}{25 e^{\frac {2}{5} \left (-26-5 x^2+5 \log \left (x^2\right )\right )} x+10 e^{\frac {1}{5} \left (-26-5 x^2+5 \log \left (x^2\right )\right )} x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^{\frac {26}{5}+x^2} \left (-e^{\frac {26}{5}+x^2}+10 x \left (-1+x^2\right )\right )}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )^2} \, dx\\ &=25 \int \frac {e^{\frac {26}{5}+x^2} \left (-e^{\frac {26}{5}+x^2}+10 x \left (-1+x^2\right )\right )}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )^2} \, dx\\ &=25 \int \left (-\frac {e^{\frac {26}{5}+x^2}}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )}+\frac {5 e^{\frac {26}{5}+x^2} \left (-1+2 x^2\right )}{x \left (e^{\frac {26}{5}+x^2}+5 x\right )^2}\right ) \, dx\\ &=-\left (25 \int \frac {e^{\frac {26}{5}+x^2}}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )} \, dx\right )+125 \int \frac {e^{\frac {26}{5}+x^2} \left (-1+2 x^2\right )}{x \left (e^{\frac {26}{5}+x^2}+5 x\right )^2} \, dx\\ &=-\left (25 \int \frac {e^{\frac {26}{5}+x^2}}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )} \, dx\right )+125 \int \left (-\frac {e^{\frac {26}{5}+x^2}}{x \left (e^{\frac {26}{5}+x^2}+5 x\right )^2}+\frac {2 e^{\frac {26}{5}+x^2} x}{\left (e^{\frac {26}{5}+x^2}+5 x\right )^2}\right ) \, dx\\ &=-\left (25 \int \frac {e^{\frac {26}{5}+x^2}}{x^2 \left (e^{\frac {26}{5}+x^2}+5 x\right )} \, dx\right )-125 \int \frac {e^{\frac {26}{5}+x^2}}{x \left (e^{\frac {26}{5}+x^2}+5 x\right )^2} \, dx+250 \int \frac {e^{\frac {26}{5}+x^2} x}{\left (e^{\frac {26}{5}+x^2}+5 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 25, normalized size = 1.00 \begin {gather*} -25 \left (-\frac {1}{x}+\frac {5}{e^{\frac {26}{5}+x^2}+5 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 20, normalized size = 0.80 \begin {gather*} \frac {25}{x + 5 \, e^{\left (-x^{2} + \log \left (x^{2}\right ) - \frac {26}{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 0.76 \begin {gather*} \frac {25}{5 \, x^{2} e^{\left (-x^{2} - \frac {26}{5}\right )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 20, normalized size = 0.80
method | result | size |
risch | \(\frac {25}{5 x^{2} {\mathrm e}^{-\frac {26}{5}-x^{2}}+x}\) | \(20\) |
default | \(\frac {25}{5 \,{\mathrm e}^{\ln \left (x^{2}\right )-x^{2}-\frac {26}{5}}+x}\) | \(21\) |
norman | \(\frac {25}{5 \,{\mathrm e}^{\ln \left (x^{2}\right )-x^{2}-\frac {26}{5}}+x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 24, normalized size = 0.96 \begin {gather*} \frac {25\,x^2}{x^3+5\,x^4\,{\mathrm {e}}^{-\frac {26}{5}}\,{\mathrm {e}}^{-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.68 \begin {gather*} \frac {25}{5 x^{2} e^{- x^{2} - \frac {26}{5}} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________