Optimal. Leaf size=24 \[ \frac {e^{-8-4 x} (4+x)^2 (2+\log (\log (x)))^2}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 8.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-8-4 x} \left (-64-32 x-4 x^2+\left (-224 x-120 x^2-16 x^3\right ) \log (x)+\left (-96-48 x-6 x^2+\left (-224 x-120 x^2-16 x^3\right ) \log (x)\right ) \log (\log (x))+\left (-32-16 x-2 x^2+\left (-56 x-30 x^2-4 x^3\right ) \log (x)\right ) \log ^2(\log (x))\right )}{x \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-8-4 x} (4+x) (2+\log (\log (x))) (-((4+x) (1+\log (\log (x))))-x (7+2 x) \log (x) (2+\log (\log (x))))}{x \log ^3(x)} \, dx\\ &=2 \int \frac {e^{-8-4 x} (4+x) (2+\log (\log (x))) (-((4+x) (1+\log (\log (x))))-x (7+2 x) \log (x) (2+\log (\log (x))))}{x \log ^3(x)} \, dx\\ &=2 \int \left (-\frac {2 e^{-8-4 x} (4+x) \left (4+x+14 x \log (x)+4 x^2 \log (x)\right )}{x \log ^3(x)}-\frac {e^{-8-4 x} (4+x) \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{x \log ^3(x)}-\frac {e^{-8-4 x} (4+x) \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{x \log ^3(x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-8-4 x} (4+x) \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{x \log ^3(x)} \, dx\right )-2 \int \frac {e^{-8-4 x} (4+x) \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{x \log ^3(x)} \, dx-4 \int \frac {e^{-8-4 x} (4+x) \left (4+x+14 x \log (x)+4 x^2 \log (x)\right )}{x \log ^3(x)} \, dx\\ &=-\left (2 \int \left (\frac {e^{-8-4 x} \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{\log ^3(x)}+\frac {4 e^{-8-4 x} \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{x \log ^3(x)}\right ) \, dx\right )-2 \int \left (\frac {e^{-8-4 x} \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{\log ^3(x)}+\frac {4 e^{-8-4 x} \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{x \log ^3(x)}\right ) \, dx-4 \int \left (\frac {e^{-8-4 x} (4+x)^2}{x \log ^3(x)}+\frac {2 e^{-8-4 x} \left (28+15 x+2 x^2\right )}{\log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-8-4 x} \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{\log ^3(x)} \, dx\right )-2 \int \frac {e^{-8-4 x} \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{\log ^3(x)} \, dx-4 \int \frac {e^{-8-4 x} (4+x)^2}{x \log ^3(x)} \, dx-8 \int \frac {e^{-8-4 x} \left (28+15 x+2 x^2\right )}{\log ^2(x)} \, dx-8 \int \frac {e^{-8-4 x} \left (12+3 x+28 x \log (x)+8 x^2 \log (x)\right ) \log (\log (x))}{x \log ^3(x)} \, dx-8 \int \frac {e^{-8-4 x} \left (4+x+7 x \log (x)+2 x^2 \log (x)\right ) \log ^2(\log (x))}{x \log ^3(x)} \, dx\\ &=-\left (2 \int \left (\frac {12 e^{-8-4 x} \log (\log (x))}{\log ^3(x)}+\frac {3 e^{-8-4 x} x \log (\log (x))}{\log ^3(x)}+\frac {28 e^{-8-4 x} x \log (\log (x))}{\log ^2(x)}+\frac {8 e^{-8-4 x} x^2 \log (\log (x))}{\log ^2(x)}\right ) \, dx\right )-2 \int \left (\frac {4 e^{-8-4 x} \log ^2(\log (x))}{\log ^3(x)}+\frac {e^{-8-4 x} x \log ^2(\log (x))}{\log ^3(x)}+\frac {7 e^{-8-4 x} x \log ^2(\log (x))}{\log ^2(x)}+\frac {2 e^{-8-4 x} x^2 \log ^2(\log (x))}{\log ^2(x)}\right ) \, dx-4 \int \left (\frac {8 e^{-8-4 x}}{\log ^3(x)}+\frac {16 e^{-8-4 x}}{x \log ^3(x)}+\frac {e^{-8-4 x} x}{\log ^3(x)}\right ) \, dx-8 \int \left (\frac {28 e^{-8-4 x}}{\log ^2(x)}+\frac {15 e^{-8-4 x} x}{\log ^2(x)}+\frac {2 e^{-8-4 x} x^2}{\log ^2(x)}\right ) \, dx-8 \int \left (\frac {3 e^{-8-4 x} \log (\log (x))}{\log ^3(x)}+\frac {12 e^{-8-4 x} \log (\log (x))}{x \log ^3(x)}+\frac {28 e^{-8-4 x} \log (\log (x))}{\log ^2(x)}+\frac {8 e^{-8-4 x} x \log (\log (x))}{\log ^2(x)}\right ) \, dx-8 \int \left (\frac {e^{-8-4 x} \log ^2(\log (x))}{\log ^3(x)}+\frac {4 e^{-8-4 x} \log ^2(\log (x))}{x \log ^3(x)}+\frac {7 e^{-8-4 x} \log ^2(\log (x))}{\log ^2(x)}+\frac {2 e^{-8-4 x} x \log ^2(\log (x))}{\log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-8-4 x} x \log ^2(\log (x))}{\log ^3(x)} \, dx\right )-4 \int \frac {e^{-8-4 x} x}{\log ^3(x)} \, dx-4 \int \frac {e^{-8-4 x} x^2 \log ^2(\log (x))}{\log ^2(x)} \, dx-6 \int \frac {e^{-8-4 x} x \log (\log (x))}{\log ^3(x)} \, dx-2 \left (8 \int \frac {e^{-8-4 x} \log ^2(\log (x))}{\log ^3(x)} \, dx\right )-14 \int \frac {e^{-8-4 x} x \log ^2(\log (x))}{\log ^2(x)} \, dx-16 \int \frac {e^{-8-4 x} x^2}{\log ^2(x)} \, dx-16 \int \frac {e^{-8-4 x} x^2 \log (\log (x))}{\log ^2(x)} \, dx-16 \int \frac {e^{-8-4 x} x \log ^2(\log (x))}{\log ^2(x)} \, dx-2 \left (24 \int \frac {e^{-8-4 x} \log (\log (x))}{\log ^3(x)} \, dx\right )-32 \int \frac {e^{-8-4 x}}{\log ^3(x)} \, dx-32 \int \frac {e^{-8-4 x} \log ^2(\log (x))}{x \log ^3(x)} \, dx-56 \int \frac {e^{-8-4 x} x \log (\log (x))}{\log ^2(x)} \, dx-56 \int \frac {e^{-8-4 x} \log ^2(\log (x))}{\log ^2(x)} \, dx-64 \int \frac {e^{-8-4 x}}{x \log ^3(x)} \, dx-64 \int \frac {e^{-8-4 x} x \log (\log (x))}{\log ^2(x)} \, dx-96 \int \frac {e^{-8-4 x} \log (\log (x))}{x \log ^3(x)} \, dx-120 \int \frac {e^{-8-4 x} x}{\log ^2(x)} \, dx-224 \int \frac {e^{-8-4 x}}{\log ^2(x)} \, dx-224 \int \frac {e^{-8-4 x} \log (\log (x))}{\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.75, size = 24, normalized size = 1.00 \begin {gather*} \frac {e^{-4 (2+x)} (4+x)^2 (2+\log (\log (x)))^2}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 61, normalized size = 2.54 \begin {gather*} \frac {{\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x - 8\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x - 8\right )} \log \left (\log \relax (x)\right ) + 4 \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x - 8\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 97, normalized size = 4.04 \begin {gather*} \frac {{\left (x^{2} e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, x^{2} e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right ) + 8 \, x e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, x^{2} e^{\left (-4 \, x\right )} + 32 \, x e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right ) + 16 \, e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right )^{2} + 32 \, x e^{\left (-4 \, x\right )} + 64 \, e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right ) + 64 \, e^{\left (-4 \, x\right )}\right )} e^{\left (-8\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.03, size = 69, normalized size = 2.88
method | result | size |
risch | \(\frac {\left (x^{2}+8 x +16\right ) {\mathrm e}^{-4 x -8} \ln \left (\ln \relax (x )\right )^{2}}{\ln \relax (x )^{2}}+\frac {4 \left (x^{2}+8 x +16\right ) {\mathrm e}^{-4 x -8} \ln \left (\ln \relax (x )\right )}{\ln \relax (x )^{2}}+\frac {4 \left (x^{2}+8 x +16\right ) {\mathrm e}^{-4 x -8}}{\ln \relax (x )^{2}}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 57, normalized size = 2.38 \begin {gather*} \frac {{\left ({\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x\right )} \log \left (\log \relax (x)\right ) + 4 \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (-4 \, x\right )}\right )} e^{\left (-8\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-4\,x-8}\,\left (32\,x+\ln \left (\ln \relax (x)\right )\,\left (48\,x+6\,x^2+\ln \relax (x)\,\left (16\,x^3+120\,x^2+224\,x\right )+96\right )+{\ln \left (\ln \relax (x)\right )}^2\,\left (16\,x+2\,x^2+\ln \relax (x)\,\left (4\,x^3+30\,x^2+56\,x\right )+32\right )+4\,x^2+\ln \relax (x)\,\left (16\,x^3+120\,x^2+224\,x\right )+64\right )}{x\,{\ln \relax (x)}^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 76, normalized size = 3.17 \begin {gather*} \frac {\left (x^{2} \log {\left (\log {\relax (x )} \right )}^{2} + 4 x^{2} \log {\left (\log {\relax (x )} \right )} + 4 x^{2} + 8 x \log {\left (\log {\relax (x )} \right )}^{2} + 32 x \log {\left (\log {\relax (x )} \right )} + 32 x + 16 \log {\left (\log {\relax (x )} \right )}^{2} + 64 \log {\left (\log {\relax (x )} \right )} + 64\right ) e^{- 4 x - 8}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________