Optimal. Leaf size=28 \[ \log \left (\frac {-5+x \left (-4+x-(4+\log (x (2+x)))^2\right )}{e^3 \log (25)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, integrand size = 92, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6741, 6684} \begin {gather*} \log \left (-x^2+20 x+x \log ^2(x (x+2))+8 x \log (x (x+2))+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {56+32 x-2 x^2+(20+12 x) \log \left (2 x+x^2\right )+(2+x) \log ^2\left (2 x+x^2\right )}{(2+x) \left (5+20 x-x^2+8 x \log (x (2+x))+x \log ^2(x (2+x))\right )} \, dx\\ &=\log \left (5+20 x-x^2+8 x \log (x (2+x))+x \log ^2(x (2+x))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.65, size = 30, normalized size = 1.07 \begin {gather*} \log \left (5+20 x-x^2+8 x \log (x (2+x))+x \log ^2(x (2+x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 41, normalized size = 1.46 \begin {gather*} \log \relax (x) + \log \left (\frac {x \log \left (x^{2} + 2 \, x\right )^{2} - x^{2} + 8 \, x \log \left (x^{2} + 2 \, x\right ) + 20 \, x + 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 33, normalized size = 1.18 \begin {gather*} \log \left (-x \log \left (x^{2} + 2 \, x\right )^{2} + x^{2} - 8 \, x \log \left (x^{2} + 2 \, x\right ) - 20 \, x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 34, normalized size = 1.21
method | result | size |
norman | \(\ln \left (-\ln \left (x^{2}+2 x \right )^{2} x +x^{2}-8 \ln \left (x^{2}+2 x \right ) x -20 x -5\right )\) | \(34\) |
risch | \(\ln \relax (x )+\ln \left (\ln \left (x^{2}+2 x \right )^{2}+8 \ln \left (x^{2}+2 x \right )-\frac {x^{2}-20 x -5}{x}\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 51, normalized size = 1.82 \begin {gather*} \log \relax (x) + \log \left (\frac {x \log \left (x + 2\right )^{2} + x \log \relax (x)^{2} - x^{2} + 2 \, {\left (x \log \relax (x) + 4 \, x\right )} \log \left (x + 2\right ) + 8 \, x \log \relax (x) + 20 \, x + 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.28, size = 34, normalized size = 1.21 \begin {gather*} \ln \left (8\,\ln \left (x^2+2\,x\right )-x+\frac {5}{x}+{\ln \left (x^2+2\,x\right )}^2+20\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 34, normalized size = 1.21 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\left (x^{2} + 2 x \right )}^{2} + 8 \log {\left (x^{2} + 2 x \right )} + \frac {- x^{2} + 20 x + 5}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________