Optimal. Leaf size=30 \[ x+x \left (1-\frac {1}{\left (4+(2+x)^2\right )^2}\right )^2-\frac {x^2}{\log (5)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.73, antiderivative size = 45, normalized size of antiderivative = 1.50, number of steps used = 21, number of rules used = 6, integrand size = 173, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {12, 2074, 638, 614, 617, 204} \begin {gather*} -\frac {2 x}{\left (x^2+4 x+8\right )^2}+\frac {x}{\left (x^2+4 x+8\right )^4}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 614
Rule 617
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-65536 x^2-163840 x^3-204800 x^4-163840 x^5-92160 x^6-37888 x^7-11520 x^8-2560 x^9-400 x^{10}-40 x^{11}-2 x^{12}+\left (32768+146440 x+265716 x^2+287097 x^3+210432 x^4+111344 x^5+43704 x^6+12806 x^7+2760 x^8+420 x^9+41 x^{10}+2 x^{11}\right ) \log (5)}{32768 x+81920 x^2+102400 x^3+81920 x^4+46080 x^5+18944 x^6+5760 x^7+1280 x^8+200 x^9+20 x^{10}+x^{11}} \, dx}{\log (5)}\\ &=\frac {\int \left (-2 x+\frac {\log (5)}{x}+\frac {16 (4+x) \log (5)}{\left (8+4 x+x^2\right )^5}-\frac {7 \log (5)}{\left (8+4 x+x^2\right )^4}-\frac {16 (4+x) \log (5)}{\left (8+4 x+x^2\right )^3}+\frac {6 \log (5)}{\left (8+4 x+x^2\right )^2}+\log (25)\right ) \, dx}{\log (5)}\\ &=-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)+6 \int \frac {1}{\left (8+4 x+x^2\right )^2} \, dx-7 \int \frac {1}{\left (8+4 x+x^2\right )^4} \, dx+16 \int \frac {4+x}{\left (8+4 x+x^2\right )^5} \, dx-16 \int \frac {4+x}{\left (8+4 x+x^2\right )^3} \, dx\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {7 (2+x)}{24 \left (8+4 x+x^2\right )^3}-\frac {2 x}{\left (8+4 x+x^2\right )^2}+\frac {3 (2+x)}{4 \left (8+4 x+x^2\right )}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)+\frac {3}{4} \int \frac {1}{8+4 x+x^2} \, dx-\frac {35}{24} \int \frac {1}{\left (8+4 x+x^2\right )^3} \, dx-6 \int \frac {1}{\left (8+4 x+x^2\right )^2} \, dx+7 \int \frac {1}{\left (8+4 x+x^2\right )^4} \, dx\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {2 x}{\left (8+4 x+x^2\right )^2}-\frac {35 (2+x)}{384 \left (8+4 x+x^2\right )^2}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)-\frac {35}{128} \int \frac {1}{\left (8+4 x+x^2\right )^2} \, dx-\frac {3}{8} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {x}{2}\right )-\frac {3}{4} \int \frac {1}{8+4 x+x^2} \, dx+\frac {35}{24} \int \frac {1}{\left (8+4 x+x^2\right )^3} \, dx\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {2 x}{\left (8+4 x+x^2\right )^2}-\frac {35 (2+x)}{1024 \left (8+4 x+x^2\right )}+\frac {3}{8} \tan ^{-1}\left (\frac {2+x}{2}\right )-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)-\frac {35 \int \frac {1}{8+4 x+x^2} \, dx}{1024}+\frac {35}{128} \int \frac {1}{\left (8+4 x+x^2\right )^2} \, dx+\frac {3}{8} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {x}{2}\right )\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {2 x}{\left (8+4 x+x^2\right )^2}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)+\frac {35 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {x}{2}\right )}{2048}+\frac {35 \int \frac {1}{8+4 x+x^2} \, dx}{1024}\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {2 x}{\left (8+4 x+x^2\right )^2}-\frac {35 \tan ^{-1}\left (\frac {2+x}{2}\right )}{2048}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)-\frac {35 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {x}{2}\right )}{2048}\\ &=\frac {x}{\left (8+4 x+x^2\right )^4}-\frac {2 x}{\left (8+4 x+x^2\right )^2}-\frac {x^2}{\log (5)}+\frac {x \log (25)}{\log (5)}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 45, normalized size = 1.50 \begin {gather*} \frac {x \left (-x+\left (\frac {1}{\left (8+4 x+x^2\right )^4}-\frac {2}{\left (8+4 x+x^2\right )^2}\right ) \log (5)+\log (25)\right )+\log (5) \log (x)}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 182, normalized size = 6.07 \begin {gather*} -\frac {x^{10} + 16 \, x^{9} + 128 \, x^{8} + 640 \, x^{7} + 2176 \, x^{6} + 5120 \, x^{5} + 8192 \, x^{4} + 8192 \, x^{3} - {\left (x^{8} + 16 \, x^{7} + 128 \, x^{6} + 640 \, x^{5} + 2176 \, x^{4} + 5120 \, x^{3} + 8192 \, x^{2} + 8192 \, x + 4096\right )} \log \relax (5) \log \relax (x) + 4096 \, x^{2} - {\left (2 \, x^{9} + 32 \, x^{8} + 256 \, x^{7} + 1280 \, x^{6} + 4350 \, x^{5} + 10224 \, x^{4} + 16320 \, x^{3} + 16256 \, x^{2} + 8065 \, x\right )} \log \relax (5)}{{\left (x^{8} + 16 \, x^{7} + 128 \, x^{6} + 640 \, x^{5} + 2176 \, x^{4} + 5120 \, x^{3} + 8192 \, x^{2} + 8192 \, x + 4096\right )} \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.22, size = 67, normalized size = 2.23 \begin {gather*} -\frac {x^{2} - 2 \, x \log \relax (5) - \log \relax (5) \log \left ({\left | x \right |}\right ) + \frac {2 \, x^{5} \log \relax (5) + 16 \, x^{4} \log \relax (5) + 64 \, x^{3} \log \relax (5) + 128 \, x^{2} \log \relax (5) + 127 \, x \log \relax (5)}{{\left (x^{2} + 4 \, x + 8\right )}^{4}}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 59, normalized size = 1.97
method | result | size |
default | \(\frac {-x^{2}+2 x \ln \relax (5)+\frac {\ln \relax (5) \left (-2 x^{5}-16 x^{4}-64 x^{3}-128 x^{2}-127 x \right )}{\left (x^{2}+4 x +8\right )^{4}}+\ln \relax (5) \ln \relax (x )}{\ln \relax (5)}\) | \(59\) |
risch | \(2 x -\frac {x^{2}}{\ln \relax (5)}+\frac {-2 x^{5} \ln \relax (5)-16 x^{4} \ln \relax (5)-64 x^{3} \ln \relax (5)-128 x^{2} \ln \relax (5)-127 x \ln \relax (5)}{\ln \relax (5) \left (x^{8}+16 x^{7}+128 x^{6}+640 x^{5}+2176 x^{4}+5120 x^{3}+8192 x^{2}+8192 x +4096\right )}+\ln \relax (x )\) | \(95\) |
norman | \(\frac {-\frac {128 \left (2 \ln \relax (5)-11\right ) x^{7}}{\ln \relax (5)}-\frac {128 \left (22 \ln \relax (5)-111\right ) x^{6}}{\ln \relax (5)}-\frac {10 \left (1613 \ln \relax (5)-7680\right ) x^{5}}{\ln \relax (5)}-\frac {16 \left (3713 \ln \relax (5)-16896\right ) x^{4}}{\ln \relax (5)}-\frac {64 \left (2305 \ln \relax (5)-10112\right ) x^{3}}{\ln \relax (5)}-\frac {2176 \left (113 \ln \relax (5)-480\right ) x^{2}}{\ln \relax (5)}-\frac {\left (254079 \ln \relax (5)-1048576\right ) x}{\ln \relax (5)}-\frac {x^{10}}{\ln \relax (5)}+\frac {2 \left (-8+\ln \relax (5)\right ) x^{9}}{\ln \relax (5)}-\frac {131072 \left (\ln \relax (5)-4\right )}{\ln \relax (5)}}{\left (x^{2}+4 x +8\right )^{4}}+\ln \relax (x )\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 96, normalized size = 3.20 \begin {gather*} -\frac {x^{2} - 2 \, x \log \relax (5) - \log \relax (5) \log \relax (x) + \frac {2 \, x^{5} \log \relax (5) + 16 \, x^{4} \log \relax (5) + 64 \, x^{3} \log \relax (5) + 128 \, x^{2} \log \relax (5) + 127 \, x \log \relax (5)}{x^{8} + 16 \, x^{7} + 128 \, x^{6} + 640 \, x^{5} + 2176 \, x^{4} + 5120 \, x^{3} + 8192 \, x^{2} + 8192 \, x + 4096}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 96, normalized size = 3.20 \begin {gather*} \ln \relax (x)-\frac {x^2}{\ln \relax (5)}-\frac {2\,x^5+16\,x^4+64\,x^3+128\,x^2+127\,x}{x^8+16\,x^7+128\,x^6+640\,x^5+2176\,x^4+5120\,x^3+8192\,x^2+8192\,x+4096}+x\,\left (\frac {40}{\ln \relax (5)}+\frac {\ln \left (25\right )-40}{\ln \relax (5)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.12, size = 75, normalized size = 2.50 \begin {gather*} - \frac {x^{2}}{\log {\relax (5 )}} + 2 x - \frac {2 x^{5} + 16 x^{4} + 64 x^{3} + 128 x^{2} + 127 x}{x^{8} + 16 x^{7} + 128 x^{6} + 640 x^{5} + 2176 x^{4} + 5120 x^{3} + 8192 x^{2} + 8192 x + 4096} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________