Optimal. Leaf size=24 \[ 3+\log \left (\frac {1}{3} \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-\log \left (\frac {9}{x^2}\right )+\log ^{e^2 x}\left (\frac {9}{x^2}\right ) \left (-2 e^2 x+e^2 x \log \left (\frac {9}{x^2}\right ) \log \left (\log \left (\frac {9}{x^2}\right )\right )\right )}{x \log ^{1+e^2 x}\left (\frac {9}{x^2}\right )-x \log \left (\frac {9}{x^2}\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\log \left (\frac {9}{x^2}\right )+\log ^{e^2 x}\left (\frac {9}{x^2}\right ) \left (-2 e^2 x+e^2 x \log \left (\frac {9}{x^2}\right ) \log \left (\log \left (\frac {9}{x^2}\right )\right )\right )}{x \log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ &=\int \left (\frac {e^2 \left (-2+\log \left (\frac {9}{x^2}\right ) \log \left (\log \left (\frac {9}{x^2}\right )\right )\right )}{\log \left (\frac {9}{x^2}\right )}+\frac {-\log \left (\frac {9}{x^2}\right )-2 e^2 x \log (x)+e^2 x \log \left (\frac {9}{x^2}\right ) \log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{x \log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )}\right ) \, dx\\ &=e^2 \int \frac {-2+\log \left (\frac {9}{x^2}\right ) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log \left (\frac {9}{x^2}\right )} \, dx+\int \frac {-\log \left (\frac {9}{x^2}\right )-2 e^2 x \log (x)+e^2 x \log \left (\frac {9}{x^2}\right ) \log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{x \log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ &=e^2 \int \left (-\frac {2}{\log \left (\frac {9}{x^2}\right )}+\log \left (\log \left (\frac {9}{x^2}\right )\right )\right ) \, dx+\int \left (-\frac {1}{x \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )}-\frac {2 e^2 \log (x)}{\log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )}+\frac {e^2 \log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)}\right ) \, dx\\ &=e^2 \int \log \left (\log \left (\frac {9}{x^2}\right )\right ) \, dx+e^2 \int \frac {\log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)} \, dx-\left (2 e^2\right ) \int \frac {1}{\log \left (\frac {9}{x^2}\right )} \, dx-\left (2 e^2\right ) \int \frac {\log (x)}{\log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx-\int \frac {1}{x \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ &=e^2 x \log \left (\log \left (\frac {9}{x^2}\right )\right )+e^2 \int \frac {\log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)} \, dx+\left (2 e^2\right ) \int \frac {1}{\log \left (\frac {9}{x^2}\right )} \, dx-\left (2 e^2\right ) \int \frac {\log (x)}{\log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx+\left (3 e^2 \sqrt {\frac {1}{x^2}} x\right ) \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (\frac {9}{x^2}\right )\right )-\int \frac {1}{x \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ &=3 e^2 \sqrt {\frac {1}{x^2}} x \text {Ei}\left (-\frac {1}{2} \log \left (\frac {9}{x^2}\right )\right )+e^2 x \log \left (\log \left (\frac {9}{x^2}\right )\right )+e^2 \int \frac {\log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)} \, dx-\left (2 e^2\right ) \int \frac {\log (x)}{\log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx-\left (3 e^2 \sqrt {\frac {1}{x^2}} x\right ) \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (\frac {9}{x^2}\right )\right )-\int \frac {1}{x \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ &=e^2 x \log \left (\log \left (\frac {9}{x^2}\right )\right )+e^2 \int \frac {\log (x) \log \left (\log \left (\frac {9}{x^2}\right )\right )}{\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)} \, dx-\left (2 e^2\right ) \int \frac {\log (x)}{\log \left (\frac {9}{x^2}\right ) \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx-\int \frac {1}{x \left (\log ^{e^2 x}\left (\frac {9}{x^2}\right )-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 39, normalized size = 1.62 \begin {gather*} \log \left (-\log \left (\frac {9}{x^2}\right )-2 \log ^{e^2 x}\left (\frac {9}{x^2}\right )+2 \left (\frac {1}{2} \log \left (\frac {9}{x^2}\right )+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 25, normalized size = 1.04 \begin {gather*} \log \left (2 \, \log \left (\frac {9}{x^{2}}\right )^{x e^{2}} - 2 \, \log \relax (3) + \log \left (\frac {9}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x e^{2} \log \left (\frac {9}{x^{2}}\right ) \log \left (\log \left (\frac {9}{x^{2}}\right )\right ) - 2 \, x e^{2}\right )} \log \left (\frac {9}{x^{2}}\right )^{x e^{2}} - \log \left (\frac {9}{x^{2}}\right )}{x \log \left (\frac {9}{x^{2}}\right )^{x e^{2}} \log \left (\frac {9}{x^{2}}\right ) - x \log \relax (x) \log \left (\frac {9}{x^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 49, normalized size = 2.04
method | result | size |
risch | \(\ln \left (-\ln \relax (x )+\left (2 \ln \relax (3)-2 \ln \relax (x )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )^{{\mathrm e}^{2} x}\right )\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.71, size = 59, normalized size = 2.46 \begin {gather*} {\left (i \, \pi + \log \relax (2)\right )} x e^{2} + \log \left ({\left (e^{\left (i \, \pi x e^{2} + x e^{2} \log \relax (2) + x e^{2} \log \left (-\log \relax (3) + \log \relax (x)\right )\right )} - \log \relax (x)\right )} e^{\left (-i \, \pi x e^{2} - x e^{2} \log \relax (2)\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 17, normalized size = 0.71 \begin {gather*} \ln \left ({\ln \left (\frac {9}{x^2}\right )}^{x\,{\mathrm {e}}^2}-\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 20, normalized size = 0.83 \begin {gather*} \log {\left (e^{x e^{2} \log {\left (- 2 \log {\relax (x )} + \log {\relax (9 )} \right )}} - \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________