Optimal. Leaf size=27 \[ e^{\frac {1}{4} \left (\frac {1}{16} \left (6+e^3\right )+x^4+\frac {\log ^2(3)}{e^3}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 32, normalized size of antiderivative = 1.19, number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2225, 2209} \begin {gather*} e^{\frac {x^4}{4}+\frac {6 e^3+e^6+16 \log ^2(3)}{64 e^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 2225
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{\frac {x^4}{4}+\frac {6 e^3+e^6+16 \log ^2(3)}{64 e^3}} x^3 \, dx\\ &=e^{\frac {x^4}{4}+\frac {6 e^3+e^6+16 \log ^2(3)}{64 e^3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 0.93 \begin {gather*} e^{\frac {1}{64} \left (6+e^3+16 x^4+\frac {16 \log ^2(3)}{e^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 25, normalized size = 0.93 \begin {gather*} e^{\left (\frac {1}{64} \, {\left (2 \, {\left (8 \, x^{4} + 3\right )} e^{3} + 16 \, \log \relax (3)^{2} + e^{6}\right )} e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 20, normalized size = 0.74 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} + \frac {1}{4} \, e^{\left (-3\right )} \log \relax (3)^{2} + \frac {1}{64} \, e^{3} + \frac {3}{32}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 0.96
method | result | size |
risch | \({\mathrm e}^{\frac {\left (16 x^{4} {\mathrm e}^{3}+16 \ln \relax (3)^{2}+6 \,{\mathrm e}^{3}+{\mathrm e}^{6}\right ) {\mathrm e}^{-3}}{64}}\) | \(26\) |
derivativedivides | \({\mathrm e}^{\frac {\left (16 \ln \relax (3)^{2}+{\mathrm e}^{6}+\left (16 x^{4}+6\right ) {\mathrm e}^{3}\right ) {\mathrm e}^{-3}}{64}}\) | \(29\) |
default | \({\mathrm e}^{\frac {\left (16 \ln \relax (3)^{2}+{\mathrm e}^{6}+\left (16 x^{4}+6\right ) {\mathrm e}^{3}\right ) {\mathrm e}^{-3}}{64}}\) | \(29\) |
norman | \({\mathrm e}^{\frac {\left (16 \ln \relax (3)^{2}+{\mathrm e}^{6}+\left (16 x^{4}+6\right ) {\mathrm e}^{3}\right ) {\mathrm e}^{-3}}{64}}\) | \(29\) |
gosper | \({\mathrm e}^{\frac {\left (16 x^{4} {\mathrm e}^{3}+16 \ln \relax (3)^{2}+6 \,{\mathrm e}^{3}+{\mathrm e}^{6}\right ) {\mathrm e}^{-3}}{64}}\) | \(30\) |
meijerg | \(-{\mathrm e}^{{\mathrm e}^{-3} \left (\frac {\ln \relax (3)^{2}}{4}+\frac {{\mathrm e}^{6}}{64}+\frac {3 \,{\mathrm e}^{3}}{32}\right )} \left (1-{\mathrm e}^{\frac {x^{4}}{4}}\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 25, normalized size = 0.93 \begin {gather*} e^{\left (\frac {1}{64} \, {\left (2 \, {\left (8 \, x^{4} + 3\right )} e^{3} + 16 \, \log \relax (3)^{2} + e^{6}\right )} e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 23, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^3}{64}}\,{\mathrm {e}}^{3/32}\,{\mathrm {e}}^{\frac {x^4}{4}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-3}\,{\ln \relax (3)}^2}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 27, normalized size = 1.00 \begin {gather*} e^{\frac {\frac {\left (16 x^{4} + 6\right ) e^{3}}{64} + \frac {\log {\relax (3 )}^{2}}{4} + \frac {e^{6}}{64}}{e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________