Optimal. Leaf size=19 \[ 4+4 e^x \log (3)+\log \left (\frac {16+x^2}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1593, 6725, 446, 72, 2194} \begin {gather*} \log \left (x^2+16\right )-\log (x)+e^x \log (81) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 446
Rule 1593
Rule 2194
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16+x^2+e^x \left (64 x+4 x^3\right ) \log (3)}{x \left (16+x^2\right )} \, dx\\ &=\int \left (\frac {-16+x^2}{x \left (16+x^2\right )}+e^x \log (81)\right ) \, dx\\ &=\log (81) \int e^x \, dx+\int \frac {-16+x^2}{x \left (16+x^2\right )} \, dx\\ &=e^x \log (81)+\frac {1}{2} \operatorname {Subst}\left (\int \frac {-16+x}{x (16+x)} \, dx,x,x^2\right )\\ &=e^x \log (81)+\frac {1}{2} \operatorname {Subst}\left (\int \left (-\frac {1}{x}+\frac {2}{16+x}\right ) \, dx,x,x^2\right )\\ &=e^x \log (81)-\log (x)+\log \left (16+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 17, normalized size = 0.89 \begin {gather*} e^x \log (81)-\log (x)+\log \left (16+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 17, normalized size = 0.89 \begin {gather*} 4 \, e^{x} \log \relax (3) + \log \left (x^{2} + 16\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.89 \begin {gather*} 4 \, e^{x} \log \relax (3) + \log \left (x^{2} + 16\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 18, normalized size = 0.95
method | result | size |
default | \(\ln \left (x^{2}+16\right )-\ln \relax (x )+4 \ln \relax (3) {\mathrm e}^{x}\) | \(18\) |
norman | \(\ln \left (x^{2}+16\right )-\ln \relax (x )+4 \ln \relax (3) {\mathrm e}^{x}\) | \(18\) |
risch | \(\ln \left (x^{2}+16\right )-\ln \relax (x )+4 \ln \relax (3) {\mathrm e}^{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 17, normalized size = 0.89 \begin {gather*} 4 \, e^{x} \log \relax (3) + \log \left (x^{2} + 16\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 17, normalized size = 0.89 \begin {gather*} \ln \left (x^2+16\right )-\ln \relax (x)+4\,{\mathrm {e}}^x\,\ln \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.89 \begin {gather*} 4 e^{x} \log {\relax (3 )} - \log {\relax (x )} + \log {\left (x^{2} + 16 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________