Optimal. Leaf size=26 \[ 15-x-12 \left (e^x-e^{x/2} \log \left (16 x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {14, 2194, 2288} \begin {gather*} 12 e^{x/2} \log \left (16 x^2\right )-x-12 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-12 e^x+\frac {6 e^{x/2} \left (4+x \log \left (16 x^2\right )\right )}{x}\right ) \, dx\\ &=-x+6 \int \frac {e^{x/2} \left (4+x \log \left (16 x^2\right )\right )}{x} \, dx-12 \int e^x \, dx\\ &=-12 e^x-x+12 e^{x/2} \log \left (16 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 0.92 \begin {gather*} -12 e^x-x+12 e^{x/2} \log \left (16 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 0.77 \begin {gather*} 12 \, e^{\left (\frac {1}{2} \, x\right )} \log \left (16 \, x^{2}\right ) - x - 12 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 0.77 \begin {gather*} 12 \, e^{\left (\frac {1}{2} \, x\right )} \log \left (16 \, x^{2}\right ) - x - 12 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 0.96
method | result | size |
norman | \(-x -12 \,{\mathrm e}^{x}+12 \,{\mathrm e}^{\frac {x}{2}} \ln \left (16 x^{2}\right )\) | \(25\) |
default | \(-x +12 \left (\ln \left (16 x^{2}\right )-2 \ln \relax (x )\right ) {\mathrm e}^{\frac {x}{2}}+24 \ln \relax (x ) {\mathrm e}^{\frac {x}{2}}-12 \,{\mathrm e}^{x}\) | \(34\) |
risch | \(24 \ln \relax (x ) {\mathrm e}^{\frac {x}{2}}-6 i {\mathrm e}^{\frac {x}{2}} \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+12 i {\mathrm e}^{\frac {x}{2}} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-6 i {\mathrm e}^{\frac {x}{2}} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+48 \,{\mathrm e}^{\frac {x}{2}} \ln \relax (2)-12 \,{\mathrm e}^{x}-x\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 20, normalized size = 0.77 \begin {gather*} 12 \, e^{\left (\frac {1}{2} \, x\right )} \log \left (16 \, x^{2}\right ) - x - 12 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.05, size = 20, normalized size = 0.77 \begin {gather*} 12\,{\mathrm {e}}^{x/2}\,\ln \left (16\,x^2\right )-12\,{\mathrm {e}}^x-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 19, normalized size = 0.73 \begin {gather*} - x + 12 e^{\frac {x}{2}} \log {\left (16 x^{2} \right )} - 12 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________