Optimal. Leaf size=27 \[ \left (3-\left (e^3+e^{-2+5 e^{4 x}}\right )^2\right ) x (x+\log (5)) \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 72, normalized size of antiderivative = 2.67, number of steps used = 4, number of rules used = 2, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6, 2288} \begin {gather*} \left (3-e^6\right ) x^2-e^{10 e^{4 x}-4} \left (x^2+x \log (5)\right )-2 e^{5 e^{4 x}-2} \left (e^3 x^2+e^3 x \log (5)\right )+\left (3-e^6\right ) x \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\left (6-2 e^6\right ) x+\left (3-e^6\right ) \log (5)+e^{-4+10 e^{4 x}} \left (-2 x-\log (5)+e^{4 x} \left (-40 x^2-40 x \log (5)\right )\right )+e^{-2+5 e^{4 x}} \left (-4 e^3 x-2 e^3 \log (5)+e^{4 x} \left (-40 e^3 x^2-40 e^3 x \log (5)\right )\right )\right ) \, dx\\ &=\left (3-e^6\right ) x^2+\left (3-e^6\right ) x \log (5)+\int e^{-4+10 e^{4 x}} \left (-2 x-\log (5)+e^{4 x} \left (-40 x^2-40 x \log (5)\right )\right ) \, dx+\int e^{-2+5 e^{4 x}} \left (-4 e^3 x-2 e^3 \log (5)+e^{4 x} \left (-40 e^3 x^2-40 e^3 x \log (5)\right )\right ) \, dx\\ &=\left (3-e^6\right ) x^2+\left (3-e^6\right ) x \log (5)-e^{-4+10 e^{4 x}} \left (x^2+x \log (5)\right )-2 e^{-2+5 e^{4 x}} \left (e^3 x^2+e^3 x \log (5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 51, normalized size = 1.89 \begin {gather*} x \left (3 x-e^6 (x+\log (5))-2 e^{1+5 e^{4 x}} (x+\log (5))-e^{-4+10 e^{4 x}} (x+\log (5))+\log (125)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 68, normalized size = 2.52 \begin {gather*} -x^{2} e^{6} + 3 \, x^{2} - {\left (x^{2} + x \log \relax (5)\right )} e^{\left (10 \, e^{\left (4 \, x\right )} - 4\right )} - 2 \, {\left (x^{2} e^{3} + x e^{3} \log \relax (5)\right )} e^{\left (5 \, e^{\left (4 \, x\right )} - 2\right )} - {\left (x e^{6} - 3 \, x\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.05, size = 77, normalized size = 2.85 \begin {gather*} -x^{2} e^{6} - 2 \, x^{2} e^{\left (5 \, e^{\left (4 \, x\right )} + 1\right )} - x {\left (e^{6} - 3\right )} \log \relax (5) - 2 \, x e^{\left (5 \, e^{\left (4 \, x\right )} + 1\right )} \log \relax (5) + 3 \, x^{2} - {\left (x^{2} e^{\left (10 \, e^{\left (4 \, x\right )}\right )} + x e^{\left (10 \, e^{\left (4 \, x\right )}\right )} \log \relax (5)\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.19, size = 63, normalized size = 2.33
method | result | size |
risch | \(\left (-x \ln \relax (5)-x^{2}\right ) {\mathrm e}^{10 \,{\mathrm e}^{4 x}-4}-2 x \left (\ln \relax (5)+x \right ) {\mathrm e}^{1+5 \,{\mathrm e}^{4 x}}-x \ln \relax (5) {\mathrm e}^{6}+3 x \ln \relax (5)-x^{2} {\mathrm e}^{6}+3 x^{2}\) | \(63\) |
norman | \(\left (-{\mathrm e}^{6}+3\right ) x^{2}+\left (-{\mathrm e}^{6} \ln \relax (5)+3 \ln \relax (5)\right ) x -x^{2} {\mathrm e}^{10 \,{\mathrm e}^{4 x}-4}-x \ln \relax (5) {\mathrm e}^{10 \,{\mathrm e}^{4 x}-4}-2 x^{2} {\mathrm e}^{3} {\mathrm e}^{5 \,{\mathrm e}^{4 x}-2}-2 x \,{\mathrm e}^{3} \ln \relax (5) {\mathrm e}^{5 \,{\mathrm e}^{4 x}-2}\) | \(93\) |
default | \(-x \ln \relax (5) {\mathrm e}^{6}+3 x \ln \relax (5)-x^{2} {\mathrm e}^{10 \,{\mathrm e}^{4 x}-4}-x \ln \relax (5) {\mathrm e}^{10 \,{\mathrm e}^{4 x}-4}-2 x^{2} {\mathrm e}^{3} {\mathrm e}^{5 \,{\mathrm e}^{4 x}-2}-2 x \,{\mathrm e}^{3} \ln \relax (5) {\mathrm e}^{5 \,{\mathrm e}^{4 x}-2}+3 x^{2}-x^{2} {\mathrm e}^{6}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 63, normalized size = 2.33 \begin {gather*} -x^{2} e^{6} - x {\left (e^{6} - 3\right )} \log \relax (5) + 3 \, x^{2} - 2 \, {\left (x^{2} e + x e \log \relax (5)\right )} e^{\left (5 \, e^{\left (4 \, x\right )}\right )} - {\left (x^{2} + x \log \relax (5)\right )} e^{\left (10 \, e^{\left (4 \, x\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.07, size = 79, normalized size = 2.93 \begin {gather*} x\,\left (3\,\ln \relax (5)-{\mathrm {e}}^6\,\ln \relax (5)\right )-2\,x^2\,{\mathrm {e}}^{5\,{\mathrm {e}}^{4\,x}+1}-x^2\,{\mathrm {e}}^{10\,{\mathrm {e}}^{4\,x}-4}-x^2\,\left ({\mathrm {e}}^6-3\right )-2\,x\,{\mathrm {e}}^{5\,{\mathrm {e}}^{4\,x}+1}\,\ln \relax (5)-x\,{\mathrm {e}}^{10\,{\mathrm {e}}^{4\,x}-4}\,\ln \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 71, normalized size = 2.63 \begin {gather*} x^{2} \left (3 - e^{6}\right ) + x \left (- e^{6} \log {\relax (5 )} + 3 \log {\relax (5 )}\right ) + \left (- x^{2} - x \log {\relax (5 )}\right ) e^{10 e^{4 x} - 4} + \left (- 2 x^{2} e^{3} - 2 x e^{3} \log {\relax (5 )}\right ) e^{5 e^{4 x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________