Optimal. Leaf size=27 \[ e^{2 e^{x \left (x-e^{5-e^x} x^2\right )} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 3.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) \left (-6 e^5 x^4+2 e^{5+x} x^5+e^{e^x} \left (4 x+4 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-6 \exp \left (5-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^4+2 \exp \left (5-e^x+x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^5+4 \exp \left (2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x \left (1+x^2\right )\right ) \, dx\\ &=2 \int \exp \left (5-e^x+x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^5 \, dx+4 \int \exp \left (2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x \left (1+x^2\right ) \, dx-6 \int \exp \left (5-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^4 \, dx\\ &=2 \int \exp \left (5-e^x+x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^5 \, dx+4 \int \exp \left (x^2+2 e^{x^2-e^{5-e^x} x^3} x^2-e^{5-e^x} x^3\right ) x \left (1+x^2\right ) \, dx-6 \int \exp \left (5-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^4 \, dx\\ &=2 \int \exp \left (5-e^x+x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^5 \, dx+4 \int \left (\exp \left (x^2+2 e^{x^2-e^{5-e^x} x^3} x^2-e^{5-e^x} x^3\right ) x+\exp \left (x^2+2 e^{x^2-e^{5-e^x} x^3} x^2-e^{5-e^x} x^3\right ) x^3\right ) \, dx-6 \int \exp \left (5-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^4 \, dx\\ &=2 \int \exp \left (5-e^x+x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^5 \, dx+4 \int \exp \left (x^2+2 e^{x^2-e^{5-e^x} x^3} x^2-e^{5-e^x} x^3\right ) x \, dx+4 \int \exp \left (x^2+2 e^{x^2-e^{5-e^x} x^3} x^2-e^{5-e^x} x^3\right ) x^3 \, dx-6 \int \exp \left (5-e^x+2 e^{e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )} x^2+e^{-e^x} \left (e^{e^x} x^2-e^5 x^3\right )\right ) x^4 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 1.00 \begin {gather*} e^{2 e^{x^2-e^{5-e^x} x^3} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.14, size = 91, normalized size = 3.37 \begin {gather*} e^{\left ({\left (x^{3} e^{5} - x^{2} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )} - {\left (x^{3} e^{10} - 2 \, x^{2} e^{\left (-{\left (x^{3} e^{5} - x^{2} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )} + e^{x} + 5\right )} - {\left (x^{2} e^{5} - e^{\left (x + 5\right )}\right )} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x} - 5\right )} + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (x^{5} e^{\left (x + 5\right )} - 3 \, x^{4} e^{5} + 2 \, {\left (x^{3} + x\right )} e^{\left (e^{x}\right )}\right )} e^{\left (2 \, x^{2} e^{\left (-{\left (x^{3} e^{5} - x^{2} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )}\right )} - {\left (x^{3} e^{5} - x^{2} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )} - e^{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.04
method | result | size |
risch | \({\mathrm e}^{2 x^{2} {\mathrm e}^{-x^{2} \left (x \,{\mathrm e}^{5}-{\mathrm e}^{{\mathrm e}^{x}}\right ) {\mathrm e}^{-{\mathrm e}^{x}}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.00, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (2 \, x^{2} e^{\left (-x^{3} e^{\left (-e^{x} + 5\right )} + x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 23, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{2\,x^2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-x^3\,{\mathrm {e}}^5\,{\mathrm {e}}^{-{\mathrm {e}}^x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.69, size = 27, normalized size = 1.00 \begin {gather*} e^{2 x^{2} e^{\left (- x^{3} e^{5} + x^{2} e^{e^{x}}\right ) e^{- e^{x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________