Optimal. Leaf size=19 \[ \frac {2 x}{(2+\log (6)) \log \left (\frac {1}{1+x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^2+\left (2+2 x^2\right ) \log \left (\frac {1}{1+x^2}\right )}{\left (2+2 x^2+\left (1+x^2\right ) \log (6)\right ) \log ^2\left (\frac {1}{1+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^2+\left (2+2 x^2\right ) \log \left (\frac {1}{1+x^2}\right )}{\left (2+\log (6)+x^2 (2+\log (6))\right ) \log ^2\left (\frac {1}{1+x^2}\right )} \, dx\\ &=\int \left (\frac {4 x^2}{\left (1+x^2\right ) (2+\log (6)) \log ^2\left (\frac {1}{1+x^2}\right )}+\frac {2}{(2+\log (6)) \log \left (\frac {1}{1+x^2}\right )}\right ) \, dx\\ &=\frac {2 \int \frac {1}{\log \left (\frac {1}{1+x^2}\right )} \, dx}{2+\log (6)}+\frac {4 \int \frac {x^2}{\left (1+x^2\right ) \log ^2\left (\frac {1}{1+x^2}\right )} \, dx}{2+\log (6)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 x}{(2+\log (6)) \log \left (\frac {1}{1+x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 19, normalized size = 1.00 \begin {gather*} \frac {2 \, x}{{\left (\log \relax (6) + 2\right )} \log \left (\frac {1}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 23, normalized size = 1.21 \begin {gather*} -\frac {2 \, x}{\log \relax (6) \log \left (x^{2} + 1\right ) + 2 \, \log \left (x^{2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 20, normalized size = 1.05
method | result | size |
norman | \(\frac {2 x}{\left (\ln \relax (6)+2\right ) \ln \left (\frac {1}{x^{2}+1}\right )}\) | \(20\) |
risch | \(\frac {2 x}{\left (\ln \relax (2)+\ln \relax (3)+2\right ) \ln \left (\frac {1}{x^{2}+1}\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.19, size = 19, normalized size = 1.00 \begin {gather*} -\frac {2 \, x}{{\left (\log \relax (3) + \log \relax (2) + 2\right )} \log \left (x^{2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 17, normalized size = 0.89 \begin {gather*} -\frac {2\,x}{\ln \left (x^2+1\right )\,\left (\ln \relax (6)+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.79 \begin {gather*} \frac {2 x}{\left (\log {\relax (6 )} + 2\right ) \log {\left (\frac {1}{x^{2} + 1} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________