Optimal. Leaf size=29 \[ -16+x+\frac {\log (x)}{x-\frac {x}{\left (x+4 x^2\right )^2-\log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 2.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x^3-17 x^4+65 x^6+272 x^7+352 x^8+256 x^9+256 x^{10}+\left (2-x^2-32 x^3-83 x^4-32 x^5-128 x^6-256 x^7-256 x^8\right ) \log (x)+\left (3 x^2+16 x^3+32 x^4\right ) \log ^2(x)-\log ^3(x)}{x^2-2 x^4-16 x^5-31 x^6+16 x^7+96 x^8+256 x^9+256 x^{10}+\left (2 x^2-2 x^4-16 x^5-32 x^6\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3 \left (-8-17 x+65 x^3+272 x^4+352 x^5+256 x^6+256 x^7\right )-\left (-2+x^2+32 x^3+83 x^4+32 x^5+128 x^6+256 x^7+256 x^8\right ) \log (x)+x^2 \left (3+16 x+32 x^2\right ) \log ^2(x)-\log ^3(x)}{x^2 \left (1-x^2-8 x^3-16 x^4+\log (x)\right )^2} \, dx\\ &=\int \left (\frac {2+x^2}{x^2}+\frac {-1+3 x^2+32 x^3+78 x^4-40 x^5-288 x^6-896 x^7-1024 x^8}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}+\frac {1+x^2+16 x^3+48 x^4}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )}-\frac {\log (x)}{x^2}\right ) \, dx\\ &=\int \frac {2+x^2}{x^2} \, dx+\int \frac {-1+3 x^2+32 x^3+78 x^4-40 x^5-288 x^6-896 x^7-1024 x^8}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx+\int \frac {1+x^2+16 x^3+48 x^4}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )} \, dx-\int \frac {\log (x)}{x^2} \, dx\\ &=\frac {1}{x}+\frac {\log (x)}{x}+\int \left (1+\frac {2}{x^2}\right ) \, dx+\int \left (\frac {3}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}-\frac {1}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}+\frac {32 x}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}+\frac {78 x^2}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}-\frac {40 x^3}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}-\frac {288 x^4}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}-\frac {896 x^5}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}-\frac {1024 x^6}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2}\right ) \, dx+\int \left (\frac {1}{-1+x^2+8 x^3+16 x^4-\log (x)}+\frac {1}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )}+\frac {16 x}{-1+x^2+8 x^3+16 x^4-\log (x)}+\frac {48 x^2}{-1+x^2+8 x^3+16 x^4-\log (x)}\right ) \, dx\\ &=-\frac {1}{x}+x+\frac {\log (x)}{x}+3 \int \frac {1}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx+16 \int \frac {x}{-1+x^2+8 x^3+16 x^4-\log (x)} \, dx+32 \int \frac {x}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx-40 \int \frac {x^3}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx+48 \int \frac {x^2}{-1+x^2+8 x^3+16 x^4-\log (x)} \, dx+78 \int \frac {x^2}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx-288 \int \frac {x^4}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx-896 \int \frac {x^5}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx-1024 \int \frac {x^6}{\left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx-\int \frac {1}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )^2} \, dx+\int \frac {1}{-1+x^2+8 x^3+16 x^4-\log (x)} \, dx+\int \frac {1}{x^2 \left (-1+x^2+8 x^3+16 x^4-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 48, normalized size = 1.66 \begin {gather*} \frac {-1+x^2+\frac {-1+x^2+8 x^3+16 x^4}{-1+x^2+8 x^3+16 x^4-\log (x)}+\log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 63, normalized size = 2.17 \begin {gather*} \frac {16 \, x^{6} + 8 \, x^{5} + x^{4} - x^{2} + 8 \, {\left (2 \, x^{4} + x^{3}\right )} \log \relax (x) - \log \relax (x)^{2}}{16 \, x^{5} + 8 \, x^{4} + x^{3} - x \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 53, normalized size = 1.83 \begin {gather*} x + \frac {16 \, x^{4} + 8 \, x^{3} + x^{2} - 1}{16 \, x^{5} + 8 \, x^{4} + x^{3} - x \log \relax (x) - x} + \frac {\log \relax (x)}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 57, normalized size = 1.97
method | result | size |
risch | \(\frac {\ln \relax (x )}{x}+\frac {x^{2}-1}{x}+\frac {16 x^{4}+8 x^{3}+x^{2}-1}{x \left (16 x^{4}+8 x^{3}+x^{2}-\ln \relax (x )-1\right )}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 63, normalized size = 2.17 \begin {gather*} \frac {16 \, x^{6} + 8 \, x^{5} + x^{4} - x^{2} + 8 \, {\left (2 \, x^{4} + x^{3}\right )} \log \relax (x) - \log \relax (x)^{2}}{16 \, x^{5} + 8 \, x^{4} + x^{3} - x \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 169, normalized size = 5.83 \begin {gather*} x+\frac {\ln \relax (x)}{x}-\frac {\frac {x^4}{4}+\frac {x^3}{8}+\frac {x^2}{64}-\frac {1}{32}}{x^5+\frac {3\,x^4}{8}+\frac {x^3}{32}-\frac {x}{64}}+\frac {\frac {256\,x^8+256\,x^7+96\,x^6+16\,x^5-47\,x^4-24\,x^3-3\,x^2+2}{x\,\left (64\,x^4+24\,x^3+2\,x^2-1\right )}+\frac {\ln \relax (x)\,\left (48\,x^4+16\,x^3+x^2+1\right )}{x\,\left (64\,x^4+24\,x^3+2\,x^2-1\right )}}{x^2-\ln \relax (x)+8\,x^3+16\,x^4-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 44, normalized size = 1.52 \begin {gather*} x + \frac {- 16 x^{4} - 8 x^{3} - x^{2} + 1}{- 16 x^{5} - 8 x^{4} - x^{3} + x \log {\relax (x )} + x} + \frac {\log {\relax (x )}}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________