Optimal. Leaf size=33 \[ 3+\left (2 e^{5-3 e^{4/x}}+e^{3-x+(x+\log (x))^2}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 9.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{10-6 e^{4/x}} \left (96 e^{4/x}+\exp \left (-4+6 e^{4/x}-2 x+2 x^2+4 x \log (x)+2 \log ^2(x)\right ) \left (2 x^2+4 x^3+\left (4 x+4 x^2\right ) \log (x)\right )+e^{-2+3 e^{4/x}-x+x^2+2 x \log (x)+\log ^2(x)} \left (48 e^{4/x}+4 x^2+8 x^3+\left (8 x+8 x^2\right ) \log (x)\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 \left (-5+3 e^{4/x}\right )} \left (96 e^{4/x}+\exp \left (-4+6 e^{4/x}-2 x+2 x^2+4 x \log (x)+2 \log ^2(x)\right ) \left (2 x^2+4 x^3+\left (4 x+4 x^2\right ) \log (x)\right )+e^{-2+3 e^{4/x}-x+x^2+2 x \log (x)+\log ^2(x)} \left (48 e^{4/x}+4 x^2+8 x^3+\left (8 x+8 x^2\right ) \log (x)\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {96 e^{-2 \left (-5+3 e^{4/x}\right )+\frac {4}{x}}}{x^2}+2 \exp \left (-2 \left (-5+3 e^{4/x}\right )+2 \left (-2+3 e^{4/x}-x+x^2+\log ^2(x)\right )\right ) x^{-1+4 x} \left (x+2 x^2+2 \log (x)+2 x \log (x)\right )+4 \exp \left (-2+3 e^{4/x}-2 \left (-5+3 e^{4/x}\right )-x+x^2+\log ^2(x)\right ) x^{-2+2 x} \left (12 e^{4/x}+x^2+2 x^3+2 x \log (x)+2 x^2 \log (x)\right )\right ) \, dx\\ &=2 \int \exp \left (-2 \left (-5+3 e^{4/x}\right )+2 \left (-2+3 e^{4/x}-x+x^2+\log ^2(x)\right )\right ) x^{-1+4 x} \left (x+2 x^2+2 \log (x)+2 x \log (x)\right ) \, dx+4 \int \exp \left (-2+3 e^{4/x}-2 \left (-5+3 e^{4/x}\right )-x+x^2+\log ^2(x)\right ) x^{-2+2 x} \left (12 e^{4/x}+x^2+2 x^3+2 x \log (x)+2 x^2 \log (x)\right ) \, dx+96 \int \frac {e^{-2 \left (-5+3 e^{4/x}\right )+\frac {4}{x}}}{x^2} \, dx\\ &=2 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{-1+4 x} (x (1+2 x)+2 (1+x) \log (x)) \, dx+4 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{-2+2 x} \left (12 e^{4/x}+x^2+2 x^3+2 x (1+x) \log (x)\right ) \, dx-96 \operatorname {Subst}\left (\int e^{-2 \left (-5+3 e^{4 x}\right )+4 x} \, dx,x,\frac {1}{x}\right )\\ &=2 \int \left (e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x} (1+2 x)+2 e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{-1+4 x} (1+x) \log (x)\right ) \, dx+4 \int \left (e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x}+12 e^{8-3 e^{4/x}+\frac {4}{x}-x+x^2+\log ^2(x)} x^{-2+2 x}+2 e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{1+2 x}+2 e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{-1+2 x} (1+x) \log (x)\right ) \, dx-24 \operatorname {Subst}\left (\int e^{10-6 x} \, dx,x,e^{4/x}\right )\\ &=4 e^{10-6 e^{4/x}}+2 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x} (1+2 x) \, dx+4 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x} \, dx+4 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{-1+4 x} (1+x) \log (x) \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{1+2 x} \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{-1+2 x} (1+x) \log (x) \, dx+48 \int e^{8-3 e^{4/x}+\frac {4}{x}-x+x^2+\log ^2(x)} x^{-2+2 x} \, dx\\ &=4 e^{10-6 e^{4/x}}+2 \int \left (e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x}+2 e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{1+4 x}\right ) \, dx+4 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x} \, dx+4 \int \left (e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x} \log (x)+e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{-1+4 x} \log (x)\right ) \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{1+2 x} \, dx+8 \int \left (e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x} \log (x)+e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{-1+2 x} \log (x)\right ) \, dx+48 \int e^{8-3 e^{4/x}+\frac {4}{x}-x+x^2+\log ^2(x)} x^{-2+2 x} \, dx\\ &=4 e^{10-6 e^{4/x}}+2 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x} \, dx+4 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x} \, dx+4 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{1+4 x} \, dx+4 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{4 x} \log (x) \, dx+4 \int e^{2 \left (3-x+x^2+\log ^2(x)\right )} x^{-1+4 x} \log (x) \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{1+2 x} \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{2 x} \log (x) \, dx+8 \int e^{8-3 e^{4/x}-x+x^2+\log ^2(x)} x^{-1+2 x} \log (x) \, dx+48 \int e^{8-3 e^{4/x}+\frac {4}{x}-x+x^2+\log ^2(x)} x^{-2+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 52, normalized size = 1.58 \begin {gather*} e^{6-6 e^{4/x}-2 x} \left (2 e^{2+x}+e^{3 e^{4/x}+x^2+\log ^2(x)} x^{2 x}\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 64, normalized size = 1.94 \begin {gather*} e^{\left (2 \, x^{2} + 4 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} - 2 \, x + 6\right )} + 4 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} - x - 3 \, e^{\frac {4}{x}} + 8\right )} + 4 \, e^{\left (-6 \, e^{\frac {4}{x}} + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 99, normalized size = 3.00 \begin {gather*} {\left (e^{\left (2 \, x^{2} + 4 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} - 2 \, x + \frac {4}{x} + 6\right )} + 4 \, e^{\left (\frac {x^{3} + 2 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} - x^{2} - 3 \, x e^{\frac {4}{x}} + 8 \, x + 4}{x}\right )} + 4 \, e^{\left (-\frac {2 \, {\left (3 \, x e^{\frac {4}{x}} - 5 \, x - 2\right )}}{x}\right )}\right )} e^{\left (-\frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 68, normalized size = 2.06
method | result | size |
risch | \(4 \,{\mathrm e}^{-6 \,{\mathrm e}^{\frac {4}{x}}+10}+x^{4 x} {\mathrm e}^{2 \ln \relax (x )^{2}+6+2 x^{2}-2 x}+4 x^{2 x} {\mathrm e}^{-3 \,{\mathrm e}^{\frac {4}{x}}+8+\ln \relax (x )^{2}+x^{2}-x}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 65, normalized size = 1.97 \begin {gather*} {\left (e^{\left (2 \, x^{2} + 4 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} + 6\right )} + 4 \, e^{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2} + x - 3 \, e^{\frac {4}{x}} + 8\right )}\right )} e^{\left (-2 \, x\right )} + 4 \, e^{\left (-6 \, e^{\frac {4}{x}} + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 70, normalized size = 2.12 \begin {gather*} 4\,{\mathrm {e}}^{-6\,{\mathrm {e}}^{4/x}}\,{\mathrm {e}}^{10}+x^{4\,x}\,{\mathrm {e}}^{2\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^6\,{\mathrm {e}}^{2\,x^2}+4\,x^{2\,x}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3\,{\mathrm {e}}^{4/x}}\,{\mathrm {e}}^8\,{\mathrm {e}}^{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________