Optimal. Leaf size=30 \[ x+9 \left (1+\frac {25 \left (e^5+\frac {e^2}{x}\right )^2 x^2}{\log ^2(x)}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.47, antiderivative size = 377, normalized size of antiderivative = 12.57, number of steps used = 101, number of rules used = 12, integrand size = 161, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {6688, 6742, 2353, 2297, 2298, 2302, 30, 2306, 2309, 2178, 2320, 2330} \begin {gather*} \frac {5625 e^{20} x^4}{\log ^4(x)}+\frac {7500 e^{20} x^4}{\log ^3(x)}+\frac {15000 e^{20} x^4}{\log ^2(x)}+\frac {60000 e^{20} x^4}{\log (x)}+\frac {22500 e^{17} x^3}{\log ^4(x)}+\frac {22500 e^{17} x^3}{\log ^3(x)}+\frac {33750 e^{17} x^3}{\log ^2(x)}+\frac {101250 e^{17} x^3}{\log (x)}+\frac {33750 e^{14} x^2}{\log ^4(x)}+\frac {22500 e^{14} x^2}{\log ^3(x)}+\frac {22500 e^{14} x^2}{\log ^2(x)}+\frac {450 e^{10} x^2}{\log ^2(x)}+\frac {45000 e^{14} x^2}{\log (x)}+\frac {900 e^{10} x^2}{\log (x)}+x+\frac {22500 e^{11} x}{\log ^4(x)}+\frac {5625 e^8}{\log ^4(x)}-\frac {7500 e^{11} \left (e^3 x+1\right )^3 x}{\log ^3(x)}+\frac {7500 e^{11} x}{\log ^3(x)}-\frac {15000 e^{11} \left (e^3 x+1\right )^3 x}{\log ^2(x)}+\frac {11250 e^{11} \left (e^3 x+1\right )^2 x}{\log ^2(x)}+\frac {3750 e^{11} x}{\log ^2(x)}+\frac {900 e^7 x}{\log ^2(x)}+\frac {450 e^4}{\log ^2(x)}-\frac {60000 e^{11} \left (e^3 x+1\right )^3 x}{\log (x)}+\frac {78750 e^{11} \left (e^3 x+1\right )^2 x}{\log (x)}-\frac {22500 e^{11} \left (e^3 x+1\right ) x}{\log (x)}-\frac {900 e^7 \left (e^3 x+1\right ) x}{\log (x)}+\frac {3750 e^{11} x}{\log (x)}+\frac {900 e^7 x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2178
Rule 2297
Rule 2298
Rule 2302
Rule 2306
Rule 2309
Rule 2320
Rule 2330
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-22500 e^8 \left (1+e^3 x\right )^4+22500 e^{11} x \left (1+e^3 x\right )^3 \log (x)-900 e^4 \left (1+e^3 x\right )^2 \log ^2(x)+900 e^7 x \left (1+e^3 x\right ) \log ^3(x)+x \log ^5(x)}{x \log ^5(x)} \, dx\\ &=\int \left (1-\frac {22500 e^8 \left (1+e^3 x\right )^4}{x \log ^5(x)}+\frac {22500 e^{11} \left (1+e^3 x\right )^3}{\log ^4(x)}-\frac {900 e^4 \left (1+e^3 x\right )^2}{x \log ^3(x)}+\frac {900 e^7 \left (1+e^3 x\right )}{\log ^2(x)}\right ) \, dx\\ &=x-\left (900 e^4\right ) \int \frac {\left (1+e^3 x\right )^2}{x \log ^3(x)} \, dx+\left (900 e^7\right ) \int \frac {1+e^3 x}{\log ^2(x)} \, dx-\left (22500 e^8\right ) \int \frac {\left (1+e^3 x\right )^4}{x \log ^5(x)} \, dx+\left (22500 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^3}{\log ^4(x)} \, dx\\ &=x-\frac {7500 e^{11} x \left (1+e^3 x\right )^3}{\log ^3(x)}-\frac {900 e^7 x \left (1+e^3 x\right )}{\log (x)}-\left (900 e^4\right ) \int \left (\frac {2 e^3}{\log ^3(x)}+\frac {1}{x \log ^3(x)}+\frac {e^6 x}{\log ^3(x)}\right ) \, dx-\left (900 e^7\right ) \int \frac {1}{\log (x)} \, dx+\left (1800 e^7\right ) \int \frac {1+e^3 x}{\log (x)} \, dx-\left (22500 e^8\right ) \int \left (\frac {4 e^3}{\log ^5(x)}+\frac {1}{x \log ^5(x)}+\frac {6 e^6 x}{\log ^5(x)}+\frac {4 e^9 x^2}{\log ^5(x)}+\frac {e^{12} x^3}{\log ^5(x)}\right ) \, dx-\left (22500 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log ^3(x)} \, dx+\left (30000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^3}{\log ^3(x)} \, dx\\ &=x-\frac {7500 e^{11} x \left (1+e^3 x\right )^3}{\log ^3(x)}+\frac {11250 e^{11} x \left (1+e^3 x\right )^2}{\log ^2(x)}-\frac {15000 e^{11} x \left (1+e^3 x\right )^3}{\log ^2(x)}-\frac {900 e^7 x \left (1+e^3 x\right )}{\log (x)}-900 e^7 \text {li}(x)-\left (900 e^4\right ) \int \frac {1}{x \log ^3(x)} \, dx+\left (1800 e^7\right ) \int \left (\frac {1}{\log (x)}+\frac {e^3 x}{\log (x)}\right ) \, dx-\left (1800 e^7\right ) \int \frac {1}{\log ^3(x)} \, dx-\left (22500 e^8\right ) \int \frac {1}{x \log ^5(x)} \, dx-\left (900 e^{10}\right ) \int \frac {x}{\log ^3(x)} \, dx+\left (22500 e^{11}\right ) \int \frac {1+e^3 x}{\log ^2(x)} \, dx-\left (33750 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log ^2(x)} \, dx-\left (45000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log ^2(x)} \, dx+\left (60000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^3}{\log ^2(x)} \, dx-\left (90000 e^{11}\right ) \int \frac {1}{\log ^5(x)} \, dx-\left (135000 e^{14}\right ) \int \frac {x}{\log ^5(x)} \, dx-\left (90000 e^{17}\right ) \int \frac {x^2}{\log ^5(x)} \, dx-\left (22500 e^{20}\right ) \int \frac {x^3}{\log ^5(x)} \, dx\\ &=x+\frac {22500 e^{11} x}{\log ^4(x)}+\frac {33750 e^{14} x^2}{\log ^4(x)}+\frac {22500 e^{17} x^3}{\log ^4(x)}+\frac {5625 e^{20} x^4}{\log ^4(x)}-\frac {7500 e^{11} x \left (1+e^3 x\right )^3}{\log ^3(x)}+\frac {900 e^7 x}{\log ^2(x)}+\frac {450 e^{10} x^2}{\log ^2(x)}+\frac {11250 e^{11} x \left (1+e^3 x\right )^2}{\log ^2(x)}-\frac {15000 e^{11} x \left (1+e^3 x\right )^3}{\log ^2(x)}-\frac {900 e^7 x \left (1+e^3 x\right )}{\log (x)}-\frac {22500 e^{11} x \left (1+e^3 x\right )}{\log (x)}+\frac {78750 e^{11} x \left (1+e^3 x\right )^2}{\log (x)}-\frac {60000 e^{11} x \left (1+e^3 x\right )^3}{\log (x)}-900 e^7 \text {li}(x)-\left (900 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (x)\right )-\left (900 e^7\right ) \int \frac {1}{\log ^2(x)} \, dx+\left (1800 e^7\right ) \int \frac {1}{\log (x)} \, dx-\left (22500 e^8\right ) \operatorname {Subst}\left (\int \frac {1}{x^5} \, dx,x,\log (x)\right )-\left (900 e^{10}\right ) \int \frac {x}{\log ^2(x)} \, dx+\left (1800 e^{10}\right ) \int \frac {x}{\log (x)} \, dx-\left (22500 e^{11}\right ) \int \frac {1}{\log ^4(x)} \, dx-\left (22500 e^{11}\right ) \int \frac {1}{\log (x)} \, dx+\left (45000 e^{11}\right ) \int \frac {1+e^3 x}{\log (x)} \, dx+\left (67500 e^{11}\right ) \int \frac {1+e^3 x}{\log (x)} \, dx+\left (90000 e^{11}\right ) \int \frac {1+e^3 x}{\log (x)} \, dx-\left (101250 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log (x)} \, dx-\left (135000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log (x)} \, dx-\left (180000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^2}{\log (x)} \, dx+\left (240000 e^{11}\right ) \int \frac {\left (1+e^3 x\right )^3}{\log (x)} \, dx-\left (67500 e^{14}\right ) \int \frac {x}{\log ^4(x)} \, dx-\left (67500 e^{17}\right ) \int \frac {x^2}{\log ^4(x)} \, dx-\left (22500 e^{20}\right ) \int \frac {x^3}{\log ^4(x)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 38, normalized size = 1.27 \begin {gather*} x+\frac {5625 e^8 \left (1+e^3 x\right )^4}{\log ^4(x)}+\frac {450 e^4 \left (1+e^3 x\right )^2}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 62, normalized size = 2.07 \begin {gather*} \frac {5625 \, x^{4} e^{20} + x \log \relax (x)^{4} + 22500 \, x^{3} e^{17} + 33750 \, x^{2} e^{14} + 450 \, {\left (x^{2} e^{10} + 2 \, x e^{7} + e^{4}\right )} \log \relax (x)^{2} + 22500 \, x e^{11} + 5625 \, e^{8}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 70, normalized size = 2.33 \begin {gather*} \frac {5625 \, x^{4} e^{20} + 450 \, x^{2} e^{10} \log \relax (x)^{2} + x \log \relax (x)^{4} + 22500 \, x^{3} e^{17} + 900 \, x e^{7} \log \relax (x)^{2} + 33750 \, x^{2} e^{14} + 450 \, e^{4} \log \relax (x)^{2} + 22500 \, x e^{11} + 5625 \, e^{8}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 68, normalized size = 2.27
method | result | size |
risch | \(x +\frac {225 \,{\mathrm e}^{4} \left (25 x^{4} {\mathrm e}^{16}+100 \,{\mathrm e}^{13} x^{3}+150 \,{\mathrm e}^{10} x^{2}+2 \,{\mathrm e}^{6} x^{2} \ln \relax (x )^{2}+100 x \,{\mathrm e}^{7}+4 \,{\mathrm e}^{3} x \ln \relax (x )^{2}+25 \,{\mathrm e}^{4}+2 \ln \relax (x )^{2}\right )}{\ln \relax (x )^{4}}\) | \(68\) |
default | \(x +\frac {22500 \,{\mathrm e}^{6} {\mathrm e}^{5} x}{\ln \relax (x )^{4}}+\frac {33750 \,{\mathrm e}^{4} {\mathrm e}^{10} x^{2}}{\ln \relax (x )^{4}}+\frac {450 \,{\mathrm e}^{4}}{\ln \relax (x )^{2}}+\frac {900 \,{\mathrm e}^{2} {\mathrm e}^{5} x}{\ln \relax (x )^{2}}+\frac {22500 \,{\mathrm e}^{2} x^{3} {\mathrm e}^{15}}{\ln \relax (x )^{4}}+\frac {450 \,{\mathrm e}^{10} x^{2}}{\ln \relax (x )^{2}}+\frac {5625 \,{\mathrm e}^{20} x^{4}}{\ln \relax (x )^{4}}+\frac {5625 \,{\mathrm e}^{8}}{\ln \relax (x )^{4}}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.46, size = 138, normalized size = 4.60 \begin {gather*} 900 \, e^{7} \Gamma \left (-1, -\log \relax (x)\right ) + 1800 \, e^{10} \Gamma \left (-1, -2 \, \log \relax (x)\right ) + 1800 \, e^{7} \Gamma \left (-2, -\log \relax (x)\right ) + 3600 \, e^{10} \Gamma \left (-2, -2 \, \log \relax (x)\right ) + 22500 \, e^{11} \Gamma \left (-3, -\log \relax (x)\right ) + 540000 \, e^{14} \Gamma \left (-3, -2 \, \log \relax (x)\right ) + 1822500 \, e^{17} \Gamma \left (-3, -3 \, \log \relax (x)\right ) + 1440000 \, e^{20} \Gamma \left (-3, -4 \, \log \relax (x)\right ) + 90000 \, e^{11} \Gamma \left (-4, -\log \relax (x)\right ) + 2160000 \, e^{14} \Gamma \left (-4, -2 \, \log \relax (x)\right ) + 7290000 \, e^{17} \Gamma \left (-4, -3 \, \log \relax (x)\right ) + 5760000 \, e^{20} \Gamma \left (-4, -4 \, \log \relax (x)\right ) + x + \frac {450 \, e^{4}}{\log \relax (x)^{2}} + \frac {5625 \, e^{8}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.38, size = 60, normalized size = 2.00 \begin {gather*} x+\frac {5625\,{\mathrm {e}}^8+22500\,x\,{\mathrm {e}}^{11}+33750\,x^2\,{\mathrm {e}}^{14}+22500\,x^3\,{\mathrm {e}}^{17}+5625\,x^4\,{\mathrm {e}}^{20}+{\ln \relax (x)}^2\,\left (450\,{\mathrm {e}}^{10}\,x^2+900\,{\mathrm {e}}^7\,x+450\,{\mathrm {e}}^4\right )}{{\ln \relax (x)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 68, normalized size = 2.27 \begin {gather*} x + \frac {5625 x^{4} e^{20} + 22500 x^{3} e^{17} + 33750 x^{2} e^{14} + 22500 x e^{11} + \left (450 x^{2} e^{10} + 900 x e^{7} + 450 e^{4}\right ) \log {\relax (x )}^{2} + 5625 e^{8}}{\log {\relax (x )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________