Optimal. Leaf size=27 \[ x+3 \left (12 \left (e^{x (5+x)}-4 x\right )+\frac {1+x+\log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {14, 2236, 2304} \begin {gather*} 36 e^{x^2+5 x}-143 x+\frac {3}{x}+\frac {3 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2236
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (36 e^{5 x+x^2} (5+2 x)+\frac {-143 x^2-3 \log (x)}{x^2}\right ) \, dx\\ &=36 \int e^{5 x+x^2} (5+2 x) \, dx+\int \frac {-143 x^2-3 \log (x)}{x^2} \, dx\\ &=36 e^{5 x+x^2}+\int \left (-143-\frac {3 \log (x)}{x^2}\right ) \, dx\\ &=36 e^{5 x+x^2}-143 x-3 \int \frac {\log (x)}{x^2} \, dx\\ &=36 e^{5 x+x^2}+\frac {3}{x}-143 x+\frac {3 \log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.00 \begin {gather*} 36 e^{5 x+x^2}+\frac {3}{x}-143 x+\frac {3 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 27, normalized size = 1.00 \begin {gather*} -\frac {143 \, x^{2} - 36 \, x e^{\left (x^{2} + 5 \, x\right )} - 3 \, \log \relax (x) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 27, normalized size = 1.00 \begin {gather*} -\frac {143 \, x^{2} - 36 \, x e^{\left (x^{2} + 5 \, x\right )} - 3 \, \log \relax (x) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 1.00
method | result | size |
default | \(-143 x +36 \,{\mathrm e}^{x^{2}+5 x}+\frac {3 \ln \relax (x )}{x}+\frac {3}{x}\) | \(27\) |
norman | \(\frac {3-143 x^{2}+36 x \,{\mathrm e}^{x^{2}+5 x}+3 \ln \relax (x )}{x}\) | \(27\) |
risch | \(\frac {3 \ln \relax (x )}{x}-\frac {143 x^{2}-36 x \,{\mathrm e}^{\left (5+x \right ) x}-3}{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.59, size = 83, normalized size = 3.07 \begin {gather*} -90 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + \frac {5}{2} i\right ) e^{\left (-\frac {25}{4}\right )} - 18 \, {\left (\frac {5 \, \sqrt {\pi } {\left (2 \, x + 5\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x + 5\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x + 5\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x + 5\right )}^{2}\right )}\right )} e^{\left (-\frac {25}{4}\right )} - 143 \, x + \frac {3 \, \log \relax (x)}{x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 24, normalized size = 0.89 \begin {gather*} 36\,{\mathrm {e}}^{x^2+5\,x}-143\,x+\frac {3\,\ln \relax (x)+3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 22, normalized size = 0.81 \begin {gather*} - 143 x + 36 e^{x^{2} + 5 x} + \frac {3 \log {\relax (x )}}{x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________