3.17.14 3e3/x+e16+ex3x2x4x5(exx26x34x55x6)x2dx

Optimal. Leaf size=29 e3/x+e16+exx2(3+x2(1+x))

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 3, integrand size = 60, number of rulesintegrand size = 0.050, Rules used = {14, 2209, 6706} ex5x43x2+ex16+e3/x

Antiderivative was successfully verified.

[In]

Int[(-3*E^(3/x) + E^(-16 + E^x - 3*x^2 - x^4 - x^5)*(E^x*x^2 - 6*x^3 - 4*x^5 - 5*x^6))/x^2,x]

[Out]

E^(3/x) + E^(-16 + E^x - 3*x^2 - x^4 - x^5)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=(3e3/xx2+e16+ex3x2x4x5(ex6x4x35x4))dx=(3e3/xx2dx)+e16+ex3x2x4x5(ex6x4x35x4)dx=e3/x+e16+ex3x2x4x5

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 30, normalized size = 1.03 e3/x+e16+ex3x2x4x5

Antiderivative was successfully verified.

[In]

Integrate[(-3*E^(3/x) + E^(-16 + E^x - 3*x^2 - x^4 - x^5)*(E^x*x^2 - 6*x^3 - 4*x^5 - 5*x^6))/x^2,x]

[Out]

E^(3/x) + E^(-16 + E^x - 3*x^2 - x^4 - x^5)

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 27, normalized size = 0.93 e(x5x43x2+ex16)+e3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)*x^2-5*x^6-4*x^5-6*x^3)*exp(exp(x)-x^5-x^4-3*x^2-16)-3*exp(3/x))/x^2,x, algorithm="fricas")

[Out]

e^(-x^5 - x^4 - 3*x^2 + e^x - 16) + e^(3/x)

________________________________________________________________________________________

giac [A]  time = 0.49, size = 27, normalized size = 0.93 e(x5x43x2+ex16)+e3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)*x^2-5*x^6-4*x^5-6*x^3)*exp(exp(x)-x^5-x^4-3*x^2-16)-3*exp(3/x))/x^2,x, algorithm="giac")

[Out]

e^(-x^5 - x^4 - 3*x^2 + e^x - 16) + e^(3/x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 28, normalized size = 0.97




method result size



risch e3x+eexx5x43x216 28



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((exp(x)*x^2-5*x^6-4*x^5-6*x^3)*exp(exp(x)-x^5-x^4-3*x^2-16)-3*exp(3/x))/x^2,x,method=_RETURNVERBOSE)

[Out]

exp(3/x)+exp(exp(x)-x^5-x^4-3*x^2-16)

________________________________________________________________________________________

maxima [A]  time = 0.77, size = 27, normalized size = 0.93 e(x5x43x2+ex16)+e3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)*x^2-5*x^6-4*x^5-6*x^3)*exp(exp(x)-x^5-x^4-3*x^2-16)-3*exp(3/x))/x^2,x, algorithm="maxima")

[Out]

e^(-x^5 - x^4 - 3*x^2 + e^x - 16) + e^(3/x)

________________________________________________________________________________________

mupad [B]  time = 1.13, size = 31, normalized size = 1.07 e3/x+eexe16e3x2ex4ex5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*exp(3/x) + exp(exp(x) - 3*x^2 - x^4 - x^5 - 16)*(6*x^3 - x^2*exp(x) + 4*x^5 + 5*x^6))/x^2,x)

[Out]

exp(3/x) + exp(exp(x))*exp(-16)*exp(-3*x^2)*exp(-x^4)*exp(-x^5)

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 22, normalized size = 0.76 e3x+ex5x43x2+ex16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp(x)*x**2-5*x**6-4*x**5-6*x**3)*exp(exp(x)-x**5-x**4-3*x**2-16)-3*exp(3/x))/x**2,x)

[Out]

exp(3/x) + exp(-x**5 - x**4 - 3*x**2 + exp(x) - 16)

________________________________________________________________________________________