3.17.19 5+x2ex22x3+2log(x)log2(x)x2dx

Optimal. Leaf size=29 ex22+x+log(2)5+xlog2(x)x

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 10, number of rules used = 4, integrand size = 33, number of rulesintegrand size = 0.121, Rules used = {14, 2209, 2304, 2305} ex22+x+5x+log2(x)x

Antiderivative was successfully verified.

[In]

Int[(-5 + x^2 - E^(x^2/2)*x^3 + 2*Log[x] - Log[x]^2)/x^2,x]

[Out]

-E^(x^2/2) + 5/x + x + Log[x]^2/x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rubi steps

integral=(ex22x+5+x2+2log(x)log2(x)x2)dx=ex22xdx+5+x2+2log(x)log2(x)x2dx=ex22+(5+x2x2+2log(x)x2log2(x)x2)dx=ex22+2log(x)x2dx+5+x2x2dxlog2(x)x2dx=ex222x2log(x)x+log2(x)x2log(x)x2dx+(15x2)dx=ex22+5x+x+log2(x)x

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 26, normalized size = 0.90 ex22+5x+x+log2(x)x

Antiderivative was successfully verified.

[In]

Integrate[(-5 + x^2 - E^(x^2/2)*x^3 + 2*Log[x] - Log[x]^2)/x^2,x]

[Out]

-E^(x^2/2) + 5/x + x + Log[x]^2/x

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 22, normalized size = 0.76 x2xe(12x2)+log(x)2+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(x)^2+2*log(x)-x^3*exp(1/4*x^2)^2+x^2-5)/x^2,x, algorithm="fricas")

[Out]

(x^2 - x*e^(1/2*x^2) + log(x)^2 + 5)/x

________________________________________________________________________________________

giac [A]  time = 0.26, size = 22, normalized size = 0.76 x2xe(12x2)+log(x)2+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(x)^2+2*log(x)-x^3*exp(1/4*x^2)^2+x^2-5)/x^2,x, algorithm="giac")

[Out]

(x^2 - x*e^(1/2*x^2) + log(x)^2 + 5)/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 26, normalized size = 0.90




method result size



default x+5xex22+ln(x)2x 26
risch ln(x)2x+xex22+x2+5x 28



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-ln(x)^2+2*ln(x)-x^3*exp(1/4*x^2)^2+x^2-5)/x^2,x,method=_RETURNVERBOSE)

[Out]

x+5/x-exp(1/4*x^2)^2+ln(x)^2/x

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 36, normalized size = 1.24 x+log(x)2+2log(x)+2x2log(x)x+3xe(12x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(x)^2+2*log(x)-x^3*exp(1/4*x^2)^2+x^2-5)/x^2,x, algorithm="maxima")

[Out]

x + (log(x)^2 + 2*log(x) + 2)/x - 2*log(x)/x + 3/x - e^(1/2*x^2)

________________________________________________________________________________________

mupad [B]  time = 1.11, size = 20, normalized size = 0.69 xex22+ln(x)2+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x)^2 - 2*log(x) + x^3*exp(x^2/2) - x^2 + 5)/x^2,x)

[Out]

x - exp(x^2/2) + (log(x)^2 + 5)/x

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 17, normalized size = 0.59 xex22+log(x)2x+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-ln(x)**2+2*ln(x)-x**3*exp(1/4*x**2)**2+x**2-5)/x**2,x)

[Out]

x - exp(x**2/2) + log(x)**2/x + 5/x

________________________________________________________________________________________