3.17.28
Optimal. Leaf size=35
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-54*x - 6*E^6*x + 162*x^2 - 108*x^3 + E^3*(-36*x + 54*x^2) + 2^(60/x)*x^(60/x)*(2*x - 6*x^2 + 4*x^3) + 2^
(20/x)*x^(20/x)*(54*x - 162*x^2 + 108*x^3 + E^6*(-40 + 2*x) + E^3*(-120 + 144*x - 36*x^2) + (40*E^6 + E^3*(120
- 120*x))*Log[2*x]) + 2^(40/x)*x^(40/x)*(-18*x + 54*x^2 - 36*x^3 + E^3*(40 - 44*x + 6*x^2) + E^3*(-40 + 40*x)
*Log[2*x]))/(-27 + 27*2^(20/x)*x^(20/x) - 9*2^(40/x)*x^(40/x) + 2^(60/x)*x^(60/x)),x]
[Out]
x^2 - 2*x^3 + x^4 - 120*E^6*Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-3), x] + 120*E^6*Log[2*x]*Defer[Int][(-3 + 2
^(20/x)*x^(20/x))^(-3), x] + 40*E^3*(3 - E^3)*Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-2), x] - 40*E^3*(3 - E^3)*
Log[2*x]*Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-2), x] - 2*E^3*(60 - E^3)*Defer[Int][x/(-3 + 2^(20/x)*x^(20/x))
^2, x] + 120*E^3*Log[2*x]*Defer[Int][x/(-3 + 2^(20/x)*x^(20/x))^2, x] + 40*E^3*Defer[Int][(-3 + 2^(20/x)*x^(20
/x))^(-1), x] - 40*E^3*Log[2*x]*Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-1), x] - 44*E^3*Defer[Int][x/(-3 + 2^(20
/x)*x^(20/x)), x] + 40*E^3*Log[2*x]*Defer[Int][x/(-3 + 2^(20/x)*x^(20/x)), x] + 6*E^3*Defer[Int][x^2/(-3 + 2^(
20/x)*x^(20/x)), x] - 120*E^6*Defer[Int][Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-3), x]/x, x] + 40*E^3*(3 - E^3)
*Defer[Int][Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-2), x]/x, x] - 120*E^3*Defer[Int][Defer[Int][x/(-3 + 2^(20/x
)*x^(20/x))^2, x]/x, x] + 40*E^3*Defer[Int][Defer[Int][(-3 + 2^(20/x)*x^(20/x))^(-1), x]/x, x] - 40*E^3*Defer[
Int][Defer[Int][x/(-3 + 2^(20/x)*x^(20/x)), x]/x, x]
Rubi steps
________________________________________________________________________________________
Mathematica [F] time = 1.31, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[(-54*x - 6*E^6*x + 162*x^2 - 108*x^3 + E^3*(-36*x + 54*x^2) + 2^(60/x)*x^(60/x)*(2*x - 6*x^2 + 4*x^3
) + 2^(20/x)*x^(20/x)*(54*x - 162*x^2 + 108*x^3 + E^6*(-40 + 2*x) + E^3*(-120 + 144*x - 36*x^2) + (40*E^6 + E^
3*(120 - 120*x))*Log[2*x]) + 2^(40/x)*x^(40/x)*(-18*x + 54*x^2 - 36*x^3 + E^3*(40 - 44*x + 6*x^2) + E^3*(-40 +
40*x)*Log[2*x]))/(-27 + 27*2^(20/x)*x^(20/x) - 9*2^(40/x)*x^(40/x) + 2^(60/x)*x^(60/x)),x]
[Out]
Integrate[(-54*x - 6*E^6*x + 162*x^2 - 108*x^3 + E^3*(-36*x + 54*x^2) + 2^(60/x)*x^(60/x)*(2*x - 6*x^2 + 4*x^3
) + 2^(20/x)*x^(20/x)*(54*x - 162*x^2 + 108*x^3 + E^6*(-40 + 2*x) + E^3*(-120 + 144*x - 36*x^2) + (40*E^6 + E^
3*(120 - 120*x))*Log[2*x]) + 2^(40/x)*x^(40/x)*(-18*x + 54*x^2 - 36*x^3 + E^3*(40 - 44*x + 6*x^2) + E^3*(-40 +
40*x)*Log[2*x]))/(-27 + 27*2^(20/x)*x^(20/x) - 9*2^(40/x)*x^(40/x) + 2^(60/x)*x^(60/x)), x]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 122, normalized size = 3.49
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-6*x^2+2*x)*exp(20*log(2*x)/x)^3+((40*x-40)*exp(3)*log(2*x)+(6*x^2-44*x+40)*exp(3)-36*x^3+54*
x^2-18*x)*exp(20*log(2*x)/x)^2+((40*exp(3)^2+(-120*x+120)*exp(3))*log(2*x)+(2*x-40)*exp(3)^2+(-36*x^2+144*x-12
0)*exp(3)+108*x^3-162*x^2+54*x)*exp(20*log(2*x)/x)-6*x*exp(3)^2+(54*x^2-36*x)*exp(3)-108*x^3+162*x^2-54*x)/(ex
p(20*log(2*x)/x)^3-9*exp(20*log(2*x)/x)^2+27*exp(20*log(2*x)/x)-27),x, algorithm="fricas")
[Out]
(9*x^4 - 18*x^3 + x^2*e^6 + (x^4 - 2*x^3 + x^2)*(2*x)^(40/x) - 2*(3*x^4 - 6*x^3 + 3*x^2 - (x^3 - x^2)*e^3)*(2*
x)^(20/x) + 9*x^2 - 6*(x^3 - x^2)*e^3)/((2*x)^(40/x) - 6*(2*x)^(20/x) + 9)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-6*x^2+2*x)*exp(20*log(2*x)/x)^3+((40*x-40)*exp(3)*log(2*x)+(6*x^2-44*x+40)*exp(3)-36*x^3+54*
x^2-18*x)*exp(20*log(2*x)/x)^2+((40*exp(3)^2+(-120*x+120)*exp(3))*log(2*x)+(2*x-40)*exp(3)^2+(-36*x^2+144*x-12
0)*exp(3)+108*x^3-162*x^2+54*x)*exp(20*log(2*x)/x)-6*x*exp(3)^2+(54*x^2-36*x)*exp(3)-108*x^3+162*x^2-54*x)/(ex
p(20*log(2*x)/x)^3-9*exp(20*log(2*x)/x)^2+27*exp(20*log(2*x)/x)-27),x, algorithm="giac")
[Out]
Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Evaluation time: 0.54Unable to divide, perhaps due to rounding error%%%{265420800000,[1,10,15,0]%%%}+%%%{-3
98131200000
________________________________________________________________________________________
maple [B] time = 0.08, size = 62, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^3-6*x^2+2*x)*exp(20*ln(2*x)/x)^3+((40*x-40)*exp(3)*ln(2*x)+(6*x^2-44*x+40)*exp(3)-36*x^3+54*x^2-18*x
)*exp(20*ln(2*x)/x)^2+((40*exp(3)^2+(-120*x+120)*exp(3))*ln(2*x)+(2*x-40)*exp(3)^2+(-36*x^2+144*x-120)*exp(3)+
108*x^3-162*x^2+54*x)*exp(20*ln(2*x)/x)-6*x*exp(3)^2+(54*x^2-36*x)*exp(3)-108*x^3+162*x^2-54*x)/(exp(20*ln(2*x
)/x)^3-9*exp(20*ln(2*x)/x)^2+27*exp(20*ln(2*x)/x)-27),x,method=_RETURNVERBOSE)
[Out]
x^4-2*x^3+x^2+(2*(2*x)^(20/x)*x+exp(3)-6*x-2*(2*x)^(20/x)+6)*x^2*exp(3)/((2*x)^(20/x)-3)^2
________________________________________________________________________________________
maxima [B] time = 0.78, size = 136, normalized size = 3.89
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^3-6*x^2+2*x)*exp(20*log(2*x)/x)^3+((40*x-40)*exp(3)*log(2*x)+(6*x^2-44*x+40)*exp(3)-36*x^3+54*
x^2-18*x)*exp(20*log(2*x)/x)^2+((40*exp(3)^2+(-120*x+120)*exp(3))*log(2*x)+(2*x-40)*exp(3)^2+(-36*x^2+144*x-12
0)*exp(3)+108*x^3-162*x^2+54*x)*exp(20*log(2*x)/x)-6*x*exp(3)^2+(54*x^2-36*x)*exp(3)-108*x^3+162*x^2-54*x)/(ex
p(20*log(2*x)/x)^3-9*exp(20*log(2*x)/x)^2+27*exp(20*log(2*x)/x)-27),x, algorithm="maxima")
[Out]
(9*x^4 - 6*x^3*(e^3 + 3) + x^2*(e^6 + 6*e^3 + 9) + (x^4 - 2*x^3 + x^2)*e^(40*log(2)/x + 40*log(x)/x) - 2*(3*x^
4 - x^3*(e^3 + 6) + x^2*(e^3 + 3))*e^(20*log(2)/x + 20*log(x)/x))/(e^(40*log(2)/x + 40*log(x)/x) - 6*e^(20*log
(2)/x + 20*log(x)/x) + 9)
________________________________________________________________________________________
mupad [B] time = 1.38, size = 139, normalized size = 3.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(54*x + exp(3)*(36*x - 54*x^2) + 6*x*exp(6) - exp((40*log(2*x))/x)*(exp(3)*(6*x^2 - 44*x + 40) - 18*x + 5
4*x^2 - 36*x^3 + log(2*x)*exp(3)*(40*x - 40)) - exp((20*log(2*x))/x)*(54*x - exp(3)*(36*x^2 - 144*x + 120) + l
og(2*x)*(40*exp(6) - exp(3)*(120*x - 120)) - 162*x^2 + 108*x^3 + exp(6)*(2*x - 40)) - 162*x^2 + 108*x^3 - exp(
(60*log(2*x))/x)*(2*x - 6*x^2 + 4*x^3))/(27*exp((20*log(2*x))/x) - 9*exp((40*log(2*x))/x) + exp((60*log(2*x))/
x) - 27),x)
[Out]
x^2 - 2*x^3 + x^4 - (x^2*exp(6) - x^2*log(2*x)*exp(6))/((log(2*x) - 1)*(2^(40/x)*x^(40/x) - 6*2^(20/x)*x^(20/x
) + 9)) + (2*(x^2*exp(3) - x^3*exp(3) - x^2*log(2*x)*exp(3) + x^3*log(2*x)*exp(3)))/((2^(20/x)*x^(20/x) - 3)*(
log(2*x) - 1))
________________________________________________________________________________________
sympy [B] time = 0.48, size = 85, normalized size = 2.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**3-6*x**2+2*x)*exp(20*ln(2*x)/x)**3+((40*x-40)*exp(3)*ln(2*x)+(6*x**2-44*x+40)*exp(3)-36*x**3+
54*x**2-18*x)*exp(20*ln(2*x)/x)**2+((40*exp(3)**2+(-120*x+120)*exp(3))*ln(2*x)+(2*x-40)*exp(3)**2+(-36*x**2+14
4*x-120)*exp(3)+108*x**3-162*x**2+54*x)*exp(20*ln(2*x)/x)-6*x*exp(3)**2+(54*x**2-36*x)*exp(3)-108*x**3+162*x**
2-54*x)/(exp(20*ln(2*x)/x)**3-9*exp(20*ln(2*x)/x)**2+27*exp(20*ln(2*x)/x)-27),x)
[Out]
x**4 - 2*x**3 + x**2 + (-6*x**3*exp(3) + 6*x**2*exp(3) + x**2*exp(6) + (2*x**3*exp(3) - 2*x**2*exp(3))*exp(20*
log(2*x)/x))/(exp(40*log(2*x)/x) - 6*exp(20*log(2*x)/x) + 9)
________________________________________________________________________________________