Optimal. Leaf size=22 \[ \left (\frac {2}{e}+x^3 \log (5+(10-x) x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 24, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 3, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {12, 6688, 6686} \begin {gather*} \frac {\left (e x^3 \log \left (-x^2+10 x+5\right )+2\right )^2}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-40 x^3+8 x^4+\left (-60 x^2-120 x^3+12 x^4+e \left (-20 x^6+4 x^7\right )\right ) \log \left (5+10 x-x^2\right )+e \left (-30 x^5-60 x^6+6 x^7\right ) \log ^2\left (5+10 x-x^2\right )}{-5-10 x+x^2} \, dx}{e}\\ &=\frac {\int \frac {2 x^2 \left (2+e x^3 \log \left (5+10 x-x^2\right )\right ) \left (-2 (-5+x) x-3 \left (-5-10 x+x^2\right ) \log \left (5+10 x-x^2\right )\right )}{5+10 x-x^2} \, dx}{e}\\ &=\frac {2 \int \frac {x^2 \left (2+e x^3 \log \left (5+10 x-x^2\right )\right ) \left (-2 (-5+x) x-3 \left (-5-10 x+x^2\right ) \log \left (5+10 x-x^2\right )\right )}{5+10 x-x^2} \, dx}{e}\\ &=\frac {\left (2+e x^3 \log \left (5+10 x-x^2\right )\right )^2}{e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 1.09 \begin {gather*} \frac {\left (2+e x^3 \log \left (5+10 x-x^2\right )\right )^2}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 39, normalized size = 1.77 \begin {gather*} {\left (x^{6} e \log \left (-x^{2} + 10 \, x + 5\right )^{2} + 4 \, x^{3} \log \left (-x^{2} + 10 \, x + 5\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 39, normalized size = 1.77 \begin {gather*} {\left (x^{6} e \log \left (-x^{2} + 10 \, x + 5\right )^{2} + 4 \, x^{3} \log \left (-x^{2} + 10 \, x + 5\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 37, normalized size = 1.68
method | result | size |
risch | \(x^{6} \ln \left (-x^{2}+10 x +5\right )^{2}+4 \,{\mathrm e}^{-1} x^{3} \ln \left (-x^{2}+10 x +5\right )\) | \(37\) |
norman | \(x^{6} \ln \left (-x^{2}+10 x +5\right )^{2}+4 \,{\mathrm e}^{-1} x^{3} \ln \left (-x^{2}+10 x +5\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 52, normalized size = 2.36 \begin {gather*} {\left (x^{6} e \log \left (-x^{2} + 10 \, x + 5\right )^{2} + 4 \, {\left (x^{3} - 575\right )} \log \left (-x^{2} + 10 \, x + 5\right ) + 2300 \, \log \left (x^{2} - 10 \, x - 5\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.62, size = 36, normalized size = 1.64 \begin {gather*} x^6\,{\ln \left (-x^2+10\,x+5\right )}^2+4\,{\mathrm {e}}^{-1}\,x^3\,\ln \left (-x^2+10\,x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 32, normalized size = 1.45 \begin {gather*} x^{6} \log {\left (- x^{2} + 10 x + 5 \right )}^{2} + \frac {4 x^{3} \log {\left (- x^{2} + 10 x + 5 \right )}}{e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________