3.17.64 6+16x12x221+3x4x2+2x3dx

Optimal. Leaf size=24 log(1(1x+2(4+13(2x)x2))2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 18, normalized size of antiderivative = 0.75, number of steps used = 1, number of rules used = 1, integrand size = 28, number of rulesintegrand size = 0.036, Rules used = {1587} 2log(2x3+4x23x+21)

Antiderivative was successfully verified.

[In]

Int[(-6 + 16*x - 12*x^2)/(-21 + 3*x - 4*x^2 + 2*x^3),x]

[Out]

-2*Log[21 - 3*x + 4*x^2 - 2*x^3]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rubi steps

integral=2log(213x+4x22x3)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 18, normalized size = 0.75 2log(213x+4x22x3)

Antiderivative was successfully verified.

[In]

Integrate[(-6 + 16*x - 12*x^2)/(-21 + 3*x - 4*x^2 + 2*x^3),x]

[Out]

-2*Log[21 - 3*x + 4*x^2 - 2*x^3]

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 18, normalized size = 0.75 2log(2x34x2+3x21)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x^2+16*x-6)/(2*x^3-4*x^2+3*x-21),x, algorithm="fricas")

[Out]

-2*log(2*x^3 - 4*x^2 + 3*x - 21)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 19, normalized size = 0.79 2log(|2x34x2+3x21|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x^2+16*x-6)/(2*x^3-4*x^2+3*x-21),x, algorithm="giac")

[Out]

-2*log(abs(2*x^3 - 4*x^2 + 3*x - 21))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 19, normalized size = 0.79




method result size



default 2ln(2x34x2+3x21) 19
norman 2ln(2x34x2+3x21) 19
risch 2ln(2x34x2+3x21) 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-12*x^2+16*x-6)/(2*x^3-4*x^2+3*x-21),x,method=_RETURNVERBOSE)

[Out]

-2*ln(2*x^3-4*x^2+3*x-21)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 18, normalized size = 0.75 2log(2x34x2+3x21)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x^2+16*x-6)/(2*x^3-4*x^2+3*x-21),x, algorithm="maxima")

[Out]

-2*log(2*x^3 - 4*x^2 + 3*x - 21)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 16, normalized size = 0.67 2ln(x32x2+3x2212)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(12*x^2 - 16*x + 6)/(3*x - 4*x^2 + 2*x^3 - 21),x)

[Out]

-2*log((3*x)/2 - 2*x^2 + x^3 - 21/2)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 19, normalized size = 0.79 2log(2x34x2+3x21)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x**2+16*x-6)/(2*x**3-4*x**2+3*x-21),x)

[Out]

-2*log(2*x**3 - 4*x**2 + 3*x - 21)

________________________________________________________________________________________